
Enhancing Transparency and Accountability of TPLs with PBOM:
A Privacy Bill of Materials

Yue Xiao
Indiana University Bloomington

& IBM Research
Yorktown Heights, New York, USA

xiaoyue@ibm.com

Adwait Nadkarni
William & Mary

Williamsburg, Virginia, USA
apnadkarni@wm.edu

Xiaojing Liao
Indiana University Bloomington

Bloomington, Indiana, USA
xliao@iu.edu

Abstract
Third-party libraries (TPLs) are extensively integrated into mobile
apps for functionalities such as analytics, advertising, app mon-
etization, and single-sign-on. While these libraries enhance app
capabilities, they also introduce privacy risks and compliance issues.
Existing privacy disclosures for TPLs, including privacy policies,
privacy label guidelines, and privacy manifests, often lack unifor-
mity, fine granularity, and timeliness, and fail to comprehensively
disclose TPL data practices. We propose the Privacy Bill of Mate-
rials (PBOM), inspired by the Software Bill of Materials (SBOM),
to enhance transparency, traceability, and accountability of TPLs.
Our contributions include designing PBOM specifications, creat-
ing an automated PBOM generation pipeline, and conducting case
studies to demonstrate PBOM’s effectiveness in improving TPL
transparency and accountability.

CCS Concepts
• Security and privacy → Software security engineering; Sys-
tems security.

Keywords
Short-formPrivacyDisclosures; Third-party Libraries; Privacy Com-
pliance Check; User Privacy; Supply Chain Security and Privacy

ACM Reference Format:
Yue Xiao, Adwait Nadkarni, and Xiaojing Liao. 2024. Enhancing Trans-
parency and Accountability of TPLs with PBOM: A Privacy Bill of Ma-
terials . In Proceedings of the 2024 Workshop on Software Supply Chain
Offensive Research and Ecosystem Defenses (SCORED ’24), October 14–18,
2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3689944.3696159

1 Introduction
Privacy violations and compliance issues in mobile apps are ma-
jor concerns for users, developers, and regulators. These concerns
are further exacerbated by the extensive integration of third-party
libraries (TPLs)—such as those for analytics, advertising, app mon-
etization, or single-sign-on functionalities—into the mobile supply
chain. While these libraries enhance app functionalities, they also

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1240-1/24/10
https://doi.org/10.1145/3689944.3696159

introduce significant privacy risks and compliance issues. Previ-
ous research has highlighted that data practices of TPLs often lack
transparency for app developers, leading to challenges in fully dis-
closing data practices in their apps and posing non-compliance
risks [35, 37, 41, 51, 67, 76, 89, 95–97, 100].

To alleviate these privacy risks, some privacy-conscious third-
party vendors release privacy disclosure guidelines [16, 20, 21]
to help app developers accurately and comprehensively specify
privacy disclosures related to TPL data practices. These guidelines
can be formatted as a set of privacy statements, represented as
𝑆 = {𝑠 |𝑠 : (𝑑, 𝑎, 𝑋 )}, where 𝑑 denotes a data item, 𝑎 represents the
data operation, and𝑋 indicates the associated configuration settings
applied to 𝑑 , such as whether the data operation can be disabled or
enabled by specific configurations. By following these guidelines,
app developers gain a better understanding of and control over the
data collection and usage practices of the libraries used within their
apps. However, recent studies [99] highlight that privacy statements
in these guidelines are often inconsistent with actual data practices
at the data, operation, and configuration levels. For example, some
guidelines erroneously state that data is not collected under any
configurations, while in reality, eight TPLs were found in [99]
to collect data mandatorily at the code level. This inconsistency
undermines the accountability of privacy label disclosure guidelines
for downstream developers.

Moreover, the privacy disclosures of TPLs often vary signifi-
cantly in their format and location, making it challenging for down-
stream app developers to navigate and accurately interpret these
documents. Privacy label guidelines can appear in various formats,
such as tables, images, standard text, and bullet points, and are
often scattered across third-party vendor websites. These disclo-
sures may be buried within extensive API documentation, hidden
in support or help sections, and sometimes even placed in blogs or
FAQs, where privacy-related content is not typically expected. The
lack of uniformity can further undermine their transparency and
limit their practical usefulness. To standardize these guidelines, in-
dustry leaders like Apple and Google have made significant strides
to enhance the transparency of data collection practices from TPLs.
Apple released the “privacy manifest” specification [23] for TPL
vendors to disclose their data practices in December 2023. Subse-
quently, Google announced the “Data Safety form” [26], urging TPL
vendors to publish privacy guidance for their users. However, those
privacy format’s design fails to account for configuration nuances,
offering less granularity and not adequately reflecting the diverse
data practices arising from different TPL configurations. Addition-
ally, existing privacy documents have struggled to be adopted or
lack practical and scalable implementation, which hinders their

 

1

https://doi.org/10.1145/3689944.3696159
https://doi.org/10.1145/3689944.3696159
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3689944.3696159
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689944.3696159&domain=pdf&date_stamp=2024-11-19


SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Yue Xiao, Adwait Nadkarni, and Xiaojing Liao

effectiveness in ensuring privacy accountability throughout the
mobile software supply chain.

To address this gap, we propose the design of a unified and
fine-grained privacy-accountable disclosure for TPLs, called PBOM
(Privacy Bills of Materials). Inspired by Software Bills of Materi-
als (SBOM), a nested inventory listing the ingredients of software
components, PBOM aims to enhance the transparency and account-
ability of TPLs in the software supply chain.
Contributions. We summarize our contributions as follows:
• We design unified, fine-grained, and compatible specifications
for PBOM, enabling a comprehensive description of data practices
performed by TPLs.
•We propose a generator pipeline that can automatically produce
PBOMs for TPLs, facilitating efficient adoption and smooth inter-
operability.
• We conduct case studies of two TPLs to demonstrate how PBOM
can enhance the transparency and accountability of TPLs.

2 Background
2.1 Bills of Materials
A Bill of Materials (BOM) is a detailed inventory of components,
materials, and parts needed to build a product. In software, a Soft-
ware Bill of Materials (SBOM) [24] lists all software components,
libraries, and dependencies, enhancing transparency, security, and
compliance. The SBOM concept gained prominence with Executive
Order 14028 [15], issued by President Biden on May 12, 2021, which
mandates developers to provide SBOMs to improve software supply
chain security.

Inspired by SBOM, we propose the Privacy Bill of Materials
(PBOM) to address privacy risks and compliance issues associated
with third-party libraries (TPLs) in the mobile supply chain. While
SBOM focuses on software components, PBOM provides a com-
prehensive and fine-grained disclosure of data practices by TPLs.
PBOM details data items collected, data sources, purposes, config-
urations, actions, destinations, and procedures. By adopting and
extending BOM principles to privacy practices, PBOM enhances
transparency, traceability, and accountability in the mobile software
supply chain. It helps app developers, end users, and regulators
understand and manage the privacy implications of TPLs, thereby
improving compliance and reducing legal risks.

2.2 Mobile TPL Data Practices
Configurable third-party libraries (TPLs) offer app developers the
flexibility to tailor libraries to meet specific app functionality needs
and privacy requirements. The configuration process typically in-
volves using configurable APIs to set parameters that control how
the TPL handles user data. Configurations that affect data usage
practices are referred to as privacy configurations. For example,
the privacy configuration API setAnalyticsCollectionEnabled
allows developers to enable or disable data collection features. The
ability to configure a TPL introduces diverse data usage practices,
such as disabling default data collection or modifying data han-
dling behaviors, which should be accurately reflected in the PBOM.
Our PBOM generator (§ 4) analyzes these configurable data usage

CycloneDX SBOM PBOM

Metadata

Dependencies

Services

Manufacturer
Component

Components
Services

Providers
Data

Services
Provider

Data

Flow
Classification

Action
Configuration
Purpose

Procedure
Destination

Data Item
Data Source

Figure 1: Specification Overview of PBOM.

practices to provide a comprehensive and fine-grained disclosure
of TPL data practices.

3 PBOM Design
PBOM is a form of privacy disclosure designed to enumerate all data
collection practices within software, aiming to ensure transparency
and enhance data protection throughout the supply chain. In this
section, we will illustrate the PBOM design goals in § 3.1, detail the
PBOM specifications in § 3.2 and discuss its use cases in ensuring
privacy assurance in § 3.3.

3.1 Design Goal
The design of PBOM should achieve high compatibility, fine granu-
larity, and seamless transformability, with the aim of simplifying
integration into existing SBOM tools, enhancing the transparency of
privacy disclosures, and facilitating compliance checks.
• Compatibility and Interoperability. The PBOM format should seam-
lessly integrate with existing SBOM tools and workflows, allowing
for efficient adoption and smooth interoperability.
• Fine Granularity. The privacy disclosure provided by PBOM should
take into account the specific TPL product, version, and configu-
ration, enabling developers visible to detailed factors that control
data collection practices.
• Transformability. The field design of PBOM should be easily con-
vertible into inputs for consistency models, thereby streamlining
compliance checks and verification processes.

3.2 PBOM Design
To fully realize the benefits of such privacy disclosure, a unified and
compatible schema is essential. We propose this privacy disclosure
to be built upon the emerging software bill of materials (SBOM)
standard, such as CycloneDX [17], while introducing new schema
elements and attributes specific to privacy disclosures while main-
taining backward compatibility with existing SBOM formats. In
particular, the CycloneDX standard is highly extensible, allowing
for complex data to be represented in the BOM [18]. It supports
Properties, a name-value store used to describe additional data
about components, services, or the BOM that is not native to the
core specification. However, rather than integrating the data collec-
tion inventory into the original SBOM,we design PBOM as an single

 

2



Enhancing Transparency and Accountability of TPLs with PBOM: A Privacy Bill of Materials SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

BOM file by extending the services field from the SBOM specifi-
cation, as shown in Figure 1. The rationale behind this decoupling
is that the inventory described in an SBOM typically remains static
until the inventory changes. In contrast, data collection practices
are much more dynamic and subject to change due to functional-
ity updates, regulatory enforcement, and customer requests. This
decoupling allows for the independent updating of data collection
practices without the need to track and manage the original SBOMs.

The current design for data collection falls under the service:data:flow
category. However, it only includes data classifications (e.g., PII,
PIFI, public)1 and the flow direction (e.g., “inbound”, “outbound”)2.
These elements alone are insufficient to fully disclose data collec-
tion practices. We propose adding seven properties to thoroughly
express data flow, highlighted in the yellow block in Figure 1.
(➊) Data Item: This field specifies which data item is being col-
lected. We follow the privacy data taxonomy defined by Google
Play’s Data Safety section [27], which categorizes 38 data types,
such as Approximate location, Precise location, Email address, and
Health info.
(➋) Data Source: This field explains the origin of the data. Data
can come from Android system APIs, user inputs, or sensitive data
from other TPLs.
(➌) Purpose: The purpose field is to help the customers understand
how each data type is used by the software. The data collection
purpose is required to be properly disclosed, according to Article
5 of the GDPR: “the data that’s collected must be for a specific and
legitimate purpose and shouldn’t be used in any way beyond that
intention”. Additionally, industry standards, such as Apple and
Google, also require purpose disclosure in privacy label. Here, we
focus on TPLs in Android, following the purpose taxonomy defined
by Google privacy labels [27], which include:“App functionality”,
“Analytics,Developer communications”, “Advertising or marketing”,
“Fraud prevention, security, and compliance”, “Personalization” and
“Account management”.
(➍) Configuration: TPLs usually provide app developers with con-
figuration APIs to control data collection practices. Some dataflows
can be triggered or disabled only when specific configurations are
enforced. For example, location data by the Flurry library is only
collected when [Flurry trackPreciseLocation:Yes]; is con-
figured. It is essential to incorporate such information into the
disclosure of dataflow, as it makes data collection practices trans-
parent to downstream app developers, giving them more leverage
to control data collection practices when integrating such libraries
and better protecting end user privacy.
(➎) Action: With configuration enforcement, data collection ac-
tions become configurable, rather than being simply collected or not
collected. The taxonomy of Action includes four operation values
{𝑌 ,𝐷, 𝐸, 𝑁}, where 𝑌 (Yes) represents compulsive collection,
i.e., collecting at any time; 𝐷 (Disablable) indicates that the TPL
collects data by default, but the collection can be disabled by cer-
tain configurations; 𝐸 (Enablable) signifies that the TPL does not
collect data by default, but the collection can be enabled by certain

1Data classification involves tagging data according to its type, sensitivity, and value
if altered, stolen, or destroyed.
2Direction is relative to the service. Inbound flow indicates that data enters the service.
Outbound flow signifies that data leaves the service. Bi-directional implies that data
flows both ways, and unknown suggests that the direction is not known

configurations; and 𝑁 (No) represents compulsive no-collection,
i.e., not collecting at any time.
(➏) Destination: The Destination field in the PBOM is essential for
providing transparency about where user data ultimately resides,
whether it is transmitted to external servers or stored locally on the
device. There are two types of destinations: (1) user data transmit-
ted out of the device to an external URL, and (2) user data preserved
on the device as files [25], in key-value pairs [31], in a local data-
base [30], or in external storage (such as /sdcard) [28]. If we detect
data being accessed but neither type of destination is identified,
we assign None to this field, indicating the data is being used in
memory and not stored or transmitted anywhere. Such information
enables more precise and fine-grained privacy compliance analysis,
as different regulations and standards have varying requirements
regarding where data ultimately ends up, thereby enabling better
control and protection of user data.
(➐) Procedure: The Procedure field describes whether the data is
being protected (e.g., de-identification or encryption) before stor-
age or transmission. Article 4(5) of the GDPR requires companies
and organizations to implement techniques or procedures to lower
the risk of potential data breaches and safeguard personal data.
Therefore, it is important to know whether dataflows utilize these
techniques, as such information provides an additional layer of data
protection.

3.3 PBOM Use Cases
The potential use cases of PBOM are multi-faceted: (1) TPL vendors
can integrate it into their CI/CD pipelines, ensuring the contin-
uous generation and release of such privacy disclosure for every
TPL version, (2) downstream customers, especially app develop-
ers, can utilize such privacy disclosure to reduce privacy risk and
ensure better compliance, and (3) Regulatory body can fit PBOM
into existing consistency models [37, 39, 89, 98, 99, 105] to audit
privacy compliance to further achieve its privacy and accountability
objectives.
➊ Ensure Continuous Compliance for TPL vendors. Tradi-
tional privacy disclosures often lack timeliness and are overly gen-
eralized. For example, privacy policies are typically updated every
few months [92] or even years and generally cover all privacy
practices for all products from a vendor. While privacy label guid-
ance [3, 5, 12] is more specific, governing all versions of a particular
product, it still falls short as different versions may have varying
data collection practices [82]. The PBOM addresses these issues by
providing more granular and timely updates. TPL vendors can inte-
grate PBOM into their CI/CD pipelines, ensuring the continuous
generation and release of up-to-date privacy disclosures for every
TPL version. This integration ensures that privacy disclosures are
both timely and precise, reflecting the most current data collection
practices for each version of the product.
➋Reduce PrivacyRisk forDownstreamCustomers. By review-
ing TPLs’ PBOMs before integration, downstream customers can
proactively identify, assess, and mitigate privacy risks associated
with third-party libraries. This preemptive review allows organiza-
tions to understand data collection practices and make informed
integration decisions. PBOMs facilitate the implementation of data

 

3



SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Yue Xiao, Adwait Nadkarni, and Xiaojing Liao

minimization strategies by enabling customers to disable unneces-
sary data collection through configuration options. This reduces the
amount of personal data collected, stored, and processed, enhancing
privacy protection and compliance with regulatory requirements
➌ Facilitate Privacy Auditing for Regulatory Body. The PBOM
can be seamlessly integrated into tools that automate privacy com-
pliance checks to detect privacy violations and assess the potential
privacy risks of software components. The representation of data
flow in PBOM can be easily converted into a tuple-based format
(i.e., (data, purpose, action, configuration)), which can be directly
input into consistency models for compliance checks. Addition-
ally, it covers all the necessary fields to perform comprehensive
privacy compliance checks. For example, PBOM can be directly
integrated with data-level compliance check tools [89, 105], which
check whether certain data is disclosed in the policy. It is also appli-
cable to entity-sensitive consistency models (e.g., PoliCheck [37]),
which take into account the entities (third-party vs. first-party) in-
volved in personal data collection. Furthermore, PBOM is adaptable
to more complex consistency models by considering the “purpose”
attribute, such as PurPliance [39] and Lalaine [98], which consider
the purpose of data collection. Finally, PBOM includes configuration
information that controls data flow, allowing for more fine-grained
consistency models like Colaine [99], which considers configura-
tion when measuring the compliance of privacy label guidance
disclosures provided by third-party SDKs.

4 PBOM Engine: A PBOM Generation Plugin
In this section, we detail the design and conceptual pipeline of
PoGen, a proposed tool for automatically generating PBOMs for
TPLs. Figure 2 illustrates the architecture of PoGen, which comprises
three phases: (➊) Preparation Phase: Configured Wrapper App
Creation, (➋) Analysis Phase: UI, Static, and Dynamic Analysis,
and (➌) Inference Phase: PBOM Generation.

In the preparation phase (➊), PoGen first collects API documenta-
tion of configurable TPLs to extract configuration descriptions and
associated code snippets. Next, PoGen employs NLP techniques to
identify privacy-related configurations, parsing their semantics to
generate machine-readable configuration patches. The Configura-
tion patch specifies a set of instructions that dictate, given a privacy
configuration, how the default wrapper app should be modified to
achieve a desired data usage practice. Each configuration patch is
then applied to create configured wrapper apps that integrate the
TPL under specific configuration settings. In the analysis phase (➋),
PoGen uses these configured wrapper apps to perform UI, static,
and dynamic analysis to thoroughly investigate the data collection
practices of the TPL under each specific configuration. UI analysis
identifies sensitive user inputs by analyzing UI-related resource
files. Static analysis uses source and sink APIs to capture call traces
of data flow. Dynamic analysis records network traffic during app
execution to capture dynamic features. In the inference phase (➌),
the analysis inputs (configuration patches, source APIs, sink APIs)
and outputs (sensitive user inputs, call traces, network traffic) are
used to infer the seven fields defined in the PBOM (e.g., data item,
data source, purpose, configuration, action, destination, procedure).

4.1 Configured Wrapper App Creation
To fully analyze the TPL, we first need to create a wrapper app
that integrates this TPL under specific configurations. This process
comprises two primary components: (1) Privacy Configuration
Patch Generation and (2) Configuration Patch Enforcement.

4.1.1 Privacy Configuration Patch Generation. We begin by collect-
ing API documentation of configurable TPLs to generate configura-
tion patches using the same JSON format as in [99]. This format
specifies the semantics of a privacy configuration setting, including
the operation to enforce the configuration, the value of the con-
figuration, and the path to add the configuration setting. Using the
Playwright library [73], we automate full-page screenshots of the
API documentation for each TPL. These screenshots are fed into an
OCR model to extract configuration descriptions and code snippets.
We then fine-tune a privacy configuration classifier in [99] with
Android TPL API documents to identify privacy-related configura-
tions impacting TPL data collection and usage behavior. Utilizing
NLP techniques, we retrieve the semantic information of each pri-
vacy configuration and generate machine-readable configuration
patches for different settings.

4.1.2 Configuration Patch Enforcement. We begin by setting up
a default wrapper app that integrates the target TPL without any
configuration. This process involves integrating the TPL, installing
dependencies, registering for TPL developer accounts, initializing
the TPL, signing the app with an Android Developer account, and
compiling the app. Once the default wrapper app is prepared, we
enumerate each configuration patch to generate multiple apps with
different configuration settings. The configuration patch is applied
to the default wrapper app, resulting in a configured wrapper app
that enforces the specific configuration. These configured wrapper
apps are then used as inputs for UI and program analysis, enabling
a thorough investigation of how different configurations impact
data collection and handling practices.

4.2 UI & Static & Dynamic Analysis
In the analysis phase, PoGen thoroughly investigates the data col-
lection practices of TPLs using UI, static, and dynamic analysis.

4.2.1 UI Analysis. To perform UI analysis for identifying sensi-
tive user input in the configured wrapper app, we follow a struc-
tured approach in literature [34, 54, 75, 77]. First, we decode the
configured wrapper app using a tool like “apktool” [2] to extract
UI-related resource files, including layout files (res/layout) and
text resources (res/values/strings.xml). Next, we preprocess
these texts by splitting words, removing redundancies, and applying
stemming. We gathered a set of sensitive UI elements by utilizing
an existing ontology [36, 37] that provides subsumptive relations
between low-level technical terminology and high-level privacy
terms. Specifically, if privacy-label data items subsume the data
value returned by the text of UI element, then this UI element is
regarded as a candidate which handle sensitive data. Finally, those
identified UI elements that carry user sensitive data serve as taint
sources, facilitating static code analysis to trace data flows.

 

4



Enhancing Transparency and Accountability of TPLs with PBOM: A Privacy Bill of Materials SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

Default wrapper App

Configuration Patch
Enforcement

API Documents Configuration Patch

Privacy Configuration 
Patch Generation

Data Inference

Destination extraction 

Configured Wrapper App CreationA

Call traces

Network traffic

B

 User inputs

Source APIs Sink APIs

configured wrapper App
Procedure Inference 

Purpose Inference

CUI & Static & Dynamic Analysis PBOM Generation

UI Analysis

Static Analysis

Dynamic Analysis

Configuration and Action
Inference

Crypto APIs

Call traces

Figure 2: Overview of PBOM Implementation.

4.2.2 Static Analysis. We perform static analysis to capture call
traces of data collection practices. To achieve this, we define the
taint sources and sinks as follows:
• Data Source. The tainted sources include three components: (1)
sensitive UI elements handling user inputs, identified through UI
analysis; (2) sensitive system APIs that return user data. To compile
a set of sensitive systemAPIs, we utilize an existing ontology [36, 37,
70, 98] to gather candidate APIs. Specifically, if privacy data items
subsume the data value returned by an API, this API is considered
a candidate; (3) third-party APIs that carry sensitive user data (e.g.,
getCurrentAccessToken() from the Facebook sign-on SDK). We
reuse a Meta-DB from [94], which records 1,094 sensitive APIs from
the top 40 third-party libraries, covering 91% of Google Play apps.
• Data Sink. Collected user data can either be stored locally on the
device or transmitted externally. We categorize sink APIs into two
types: storage-related and network-related. For storage APIs, we
focus on classes and methods for reading from and writing to files,
databases, and shared preferences, such as File, FileOutputStream,
SQLiteDatabase, and SharedPreferences. For network APIs, we
identify classes and methods responsible for network communi-
cations, examining built-in classes like HttpURLConnection and
popular third-party libraries like OkHttp [8].

Finally, with the source and sink APIs collected, we perform
static analysis to obtain call traces data. Using taint analysis [64],
we trace data flow from sources to sinks, examining control and
data flow within the application.

4.2.3 Dynamic Analysis. Our pipeline automatically installs each
app using the Android Debug Bridge (adb) command [1] and sched-
ules it to run on a set of rooted Android devices. To facilitate
dynamic execution, we utilize an open-source UI execution tool
called nosmoke [14], which generates actions and automatically
triggers the app’s UI interactions, such as clicks or swipes. This
approach is consistent with common practices in Android app
analysis [62, 69, 78, 82, 84]. For network monitoring, we employ
Fiddler [22], a popular network monitoring tool capable of TLS
decryption and handling common decoding schemes. Similar to
previous studies [56, 79, 82–84], Fiddler allows us to decrypt and
inspect app traffic, providing detailed insights into data transmis-
sion practices. By analyzing the captured network traffic, we can

identify any de-identification techniques applied by the TPLs and
the endpoints to which the data is transmitted. Besides, this net-
work traffic analysis also aids in inferring the purpose of the data
collection.

4.3 PBOM Generation
In this section, we detail the inference of the seven fields in the
PBOM using the inputs and outputs from the analysis phase.

4.3.1 Data Inference. User privacy data can originate from three
sources: ➊ Sensitive User Inputs, referred to as User-Input Privacy
Data,➋ Sensitive SystemAPIs, referred to as System-Centric Privacy
Data, and ➌ Third-party APIs, referred to as Cross-TPLs Privacy
Data.
• User-Input Privacy Data. The content entered by users into a
mobile app through its user interface (UI), such as credit card in-
formation, usernames, and passwords, can be highly sensitive. We
obtained such User-Input Privacy Data through the app’s UI anal-
ysis in § 4.2.1. In these cases, the data_item is the text from the
identified sensitive UI element, and the data_source is the identi-
fied UI element.
• System-Centric Privacy Data.The operating system (OS) can return
sensitive user data, such as GPS locations, through system APIs like
getLastKnownLocation(). We infer such System-Centric Privacy
Data by retrieving the return values of a set of sensitive system
APIs from § 4.2.2. In these cases, the data_item is the API return
value, and the data_source is the sensitive system API.
• Cross-TPLs Privacy Data. Third-party libraries can harvest data
from other TPLs that handle sensitive user data (e.g., Facebook
SDK). To cover such cases, we reuse a Meta-DB from [94], which
records 1,094 API specifications and metadata of the top 40 third-
party libraries. For each API, Meta-DB records the data it returns
(e.g., session token, page likes, user ID, profiles, groups followed).
In these cases, the data_item is the data returned by the API, and
the data_source is the other TPL and the accessed API.

4.3.2 Purpose Inference. In our study, we analyze a set of high-
profile TPLs by comprehensively reviewing their API documen-
tation and investigating static and dynamic call traces, as well as

 

5



SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Yue Xiao, Adwait Nadkarni, and Xiaojing Liao

network traffic data, to identify features relevant for purpose pre-
diction. We specifically select features tailored to the purpose cate-
gories and definitions provided by Google. These features are con-
sidered robust, meaning that missing these features might prevent
the classifier from correctly differentiating between different pur-
poses. To this end, we reused four features from MobiPurpose [56]
and Lalaine [98], and introduced four new features. The features
are categorized into three groups: internal SDK features, call traces
features, and traffic features, as shown in Table 1. Further, we apply
PyCaret [11] with Python 3.6 [91], an open-source machine learn-
ing package deployed with 18 algorithms, to select the best model
as well as the hyper-parameters for purpose identification.

Table 1: Feature Selection

Group Feature Source

Internal SDK Features
Configuration description SDK API

DocumentationConfiguration API

Call Traces Features
Function in Call Traces

Static AnalysisSensitive System API
Privacy-related UI Element

Traffic Features
Domain Name

Dynamic AnalysisURL Paths
KV Pairs

4.3.3 Configuration and Action Inference. The configuration API
can be directly obtained through the value field in the configuration
patch generated in § 4.1.1. To infer the action of data practices,
we follow this logic: If a dataflow occurs only when a specific
configuration is enabled (and does not happen by default), then the
action is E (Enablable by developer). If the configuration is disabled
by default but can be enabled by the developer, the dataflow does
not occur initially, and the action is D (Disablable by developer).
If the dataflow always occurs regardless of the configuration, the
action is Y (Always collected).

4.3.4 Destination extraction. Based on data end-up states, data can
be categorized into three types: Data in Use, Data at Rest, and Data
in Transit. Data in Use refers to data accessed by an SDK in memory
without being saved or transmitted. In such cases, the destination
will be assigned as None. Data at Rest refers to information stored
on the device. In these cases, we resolve the location of data storage,
such as databases, files, or external storage. Data in Transit means
data is transmitted off the device and sent to a server. The network
endpoint would be the destination.
• Data in Use: If a data flow from the entry point of the SDK to
sensitive system/third-party APIs or user input elements is detected,
but no flow to sink APIs is found, then the data is only in use and
does not flow to the device or network, and the destination is None.
• Data at Rest: If the sink APIs in the data flow are storage APIs,
we further resolve the specific files, local databases, or Shared-
Preferences where the data is stored. We use pattern matching to
identify classes and methods related to file storage, such as File,
FileOutputStream, and FileWriter. By tracing the initialization
of File objects, we determine the file paths and names used for
storing data. For a local database, we parse SQL strings to identify
where data is stored. For SharedPreferences, we detect its usage

by tracking methods such as getSharedPreferences, putString,
and putInt to identify the preference file names and keys used for
storing user data.
• Data in Transit: To resolve the specific network endpoints where
user data is sent when a network API is identified as a sink, we
utilize state-of-the-art tools [106] capable of statically resolving
string values in Android apps (using a value set analysis approach,
with backward slicing and string-related operation analysis). For
endpoints whose values cannot be resolved statically due to runtime
contexts (e.g., downloading additional code from the cloud/server [53],
dynamically loading endpoints [94]), we perform dynamic analysis
to monitor network traffic and capture HTTP traffic that transmits
the data. Dynamic analysis can suffer from code coverage problems.
Hence, for better coverage, if the endpoints cannot be resolved, we
will put “TBD” in this field and rely on a manual process to validate
the results.

4.3.5 Procedure inference. We mainly focus on two types of data
processing (Data encryption and Data de-identification) before
storage or transmission.
• Encryption: Data encryption is one of the most important ways
to protect data used, stored, or transmitted in a mobile app. It can
prevent unauthorized parties from reading private, confidential or
sensitive data. To detect whether data is encrypted, we first sum-
marized commonly used cryptographic libraries and APIs, as dis-
cussed in Literature [40, 47, 74, 88, 103], such as javax.crypto and
java.security, focusing on classes and methods related to encryp-
tion, including Cipher, SecretKeySpec, and MessageDigest. Next,
we perform taint analysis to trace the flow of data from sources
(user inputs, sensitive data) to sinks (storage and network APIs).
We use pattern matching to detect encryption and decryption oper-
ations, such as calls to Cipher.getInstance(), cipher.init(),
and cipher.doFinal(). By building a call graph and systematically
analyzing method calls, we verify whether encryption is applied be-
fore data is used, stored, or transmitted. If cryptographic operations
are detected, we will assign “Encryption” to Protection field.
• De-identification: We determine whether de-identification tech-
niques are applied by inspecting the network traffic. Specifically, we
look for evidence of de-identification techniques such as hashing,
pseudonymization, and data masking. Hashing involves transform-
ing sensitive data, like personal identifiers, into fixed-length hash
values using cryptographic functions (e.g., SHA-256), which cannot
be easily reversed. Pseudonymization replaces original identifiers
(e.g., names, Social Security numbers) with unique pseudonyms
or tokens, allowing data linkage without revealing personal in-
formation. Data masking obscures parts of sensitive data, such as
displaying only the last four digits of a credit card number or re-
placing characters in an email address with asterisks, ensuring that
intercepted data cannot be used to identify individuals.

5 Case Study
Following the proposed pipeline in § 4 , we present use cases that
demonstrate how data transparency and accountability require-
ments can be expressed by PBOM. We first introduce a use case
that employs PBOM to express configurable data usage practices

 

6



Enhancing Transparency and Accountability of TPLs with PBOM: A Privacy Bill of Materials SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

for TPLs in mobile apps. We then show how to use PBOM to ex-
press cross-TPLs data processing, aiming to address compliance
requirements for third-party data sharing.

5.1 Expressing Mobile App with Configurable
TPL

In this section, we present a case study on the Radar SDK, a full-stack
location infrastructure for various products and services. Listing 1
provides an example of PBOM for Radar SDK with version 3.8.0,
which extends the SBOM format specified by CycloneDX 1.4.
• Data Item: The Radar library collects Precise Location, which
refers to a physical location with an accuracy of at least 3 square
kilometers.
•Data Source: The Precise Location is obtained from the Android
system API: getLastKnownLocation().
• Purpose: The Radar SDK provides location services to app develop-
ers to enhance their app functionality. This includes adding features
such as geofencing, location tracking, trip tracking, geocoding, and
search to the apps.
• Configuration: The Radar library allows downstream develop-
ers (i.e., app developers) to configure the tracking of users’ lo-
cations in the background. By enabling the configuration Radar.
startTracking(RadarTrackingOptions.RESPONSIVE); [29], the
Radar library collects precise location data by detecting whether
the device is stationary or moving. When moving, the library sends
location updates to the server every 2-3 minutes.
• Action: Precise location tracking is configurable by the down-
stream developer. Therefore, the collection action here is E, meaning
this data collection is not enabled by default and must be activated
by the downstream developer. The developer can decide whether
enabling this feature satisfies the app’s functionality requirements.
• Destination: The precise location data is transmitted out of the
device and sent to the SDK server at https://api.radar.io/.
• Procedure:. The raw precise location data is collected without any
processing before transmission. Through the call trace between
getLastLocation() [19] and network API UrlRequest () [32].

In our preliminary study, we observed that 10.67% of apps inte-
grating the Radar library had compliance issues with their privacy
label disclosures. Using Lalaine [98], an automatic privacy label
compliance check pipeline, we investigated 150 apps that integrated
the Radar library. Among these, 16 apps had configured location
tracking in Radar but failed to disclose the collection of precise
location data. The release of a PBOM alongside the Radar library
can significantly enhance transparency and accountability in data
collection practices. PBOM clearly outlines the specific configura-
tions and data collection methods employed by the Radar library,
providing detailed information on data types, sources, purposes,
and actions. By including such comprehensive documentation, app
developers gain greater leverage over data collection settings, en-
abling them to disable tracking features if needed to protect their
end-users’ privacy.

5.2 Expressing Cross-TPLs Data Processing
Operations

In this section, we present a case study on Mobiburn [6], a market-
ing library that provides betting strategies for mobile marketers.

Listing 1: PBOM Example for Radar library� �
1 {
2 "bomFormat": "CycloneDX", "specVersion": "1.4",
3 "services": [{
4 "provider": {"name": "Radar", "url": ["https://radar.com

/"]},
5 "name": "Radar Android SDK", "version": "3.8.0",
6 "data": [{
7 "classification": "PII",
8 "flow": [{
9 "properties": [
10 {"name": "Data_Item","value": "Precise Location"},
11 {"name": "Data_Source", "value": "System API:

getLastKnownLocation()"}
12 {"name": "Purpose", "value": "App functionality"},
13 {"name": "Configuration", "value": "Radar.

startTracking(RadarTrackingOptions.RESPONSIVE);"},
14 {"name": "Action", "value": "E (enabled by

configuration)"},
15 {"name": "Destination", "value": "https://api.radar.

io/"},
16 {"name": "Procedure", "value": "None"}]} ]}
17 ]}
18 }� �

Mobiburn performs cross-library data harvesting from other SDKs
(i.e., Facebook SDK) [94]. Listing 2 provides an example of PBOM
for the Mobiburn library, version v1.5.3, which extends the SBOM
format specified by CycloneDX 1.4.
• Data Item: Mobiburn strategically harvests user data from the
Facebook SDK3, a social media library that is extensively used
by apps for single sign-on and carries user personal information.
Specifically, Mobiburn harvests personal info from Facebook end
users, including id, first_name, gender, last_name, link, locale, time-
zone, updated_time, verified_email.
• Data Source: The data is sourced from the Facebook SDK. Specif-
ically, the Mobiburn library fetches a user’s Facebook personal
information (ID, name, gender, email, locale, link, etc.) by calling
getFbProfile() after retrieving the user’s Facebook access token.
This is done by invoking the function com.facebook.AccessToken
.getToken() through reflection techniques.
• Purpose: Mobiburn, as a marketing company, collects personal
information from Facebook end-users to providemarketing services
to other data suppliers and marketers. Therefore, the purpose of
collecting personal info is Advertising or marketing.
• Configuration: The configuration field is None. The Mobiburn
automatically initiates the collection of personal data from Facebook
without any configurations.
• Action: The collection action is “Y: Always collected”, as
there is no configuration for app developers to control this data-
harvesting behavior.
•Destination: The personal information is transmitted off the device
and sent to the Mobiburn server at https://api.mobiburn.com/.

3The terms “SDK” and “TPL” can be used interchangeably.

 

7



SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Yue Xiao, Adwait Nadkarni, and Xiaojing Liao

Listing 2: PBOM Example for Radar library� �
1 {
2 "bomFormat": "CycloneDX", "specVersion": "1.4",
3 "services": [{
4 "provider": {"name": "Mobiburn", "url": ["https://www.

mobiburn.com/#/"]},
5 "name": "Mobiburn Android SDK", "version": "v1.5.3",
6 "data": [{
7 "classification": "PII",
8 "flow": [{
9 "properties": [
10 {"name": "Data_Item", "value": "Personal Info"},
11 {"name": "Data_Source", "value": "Facebook:

getFbProfile(String token); com.facebook.AccessToken.
getToken()"}

12 {"name": "Purpose", "value": "Advertising or
marketing"},

13 {"name": "Configuration", "value": "None"},
14 {"name": "Action", "value": "Y (always collected)"},
15 {"name": "Destination", "value": " https://api.

mobiburn.com/"},
16 {"name": "Procedure", "value": "RSA Encryption"}]}
17 ]}
18 }� �

• Procedure: Mobiburn employs encryption before sending data
over the Internet, specifically using RSA encryption implemented
by com.mobiburn.

The data harvesting behavior from one TPL to the other third-
party SDK can violate the terms and conditions of the data provider.
In such case, Mobiburn’s data harvesting from the Facebook SDK
strongly violated Facebook’s data sharing policy in their Terms of
Service (ToS) [4], leading to legal action where Facebook banned
and sued Mobiburn in August 2020 [13]. If Mobiburn had released
a PBOM along with its library, the data collection practices would
have been clearly documented, potentially preventing such viola-
tions. PBOM can enhance transparency by detailing data collection,
sources, purposes, configurations, actions, destinations, and proce-
dures. This comprehensive documentation allows stakeholders to
verify compliance with data sharing policies and legal requirements.
Moreover, by providing a clear and accountable disclosure of data
practices, PBOM helps companies mitigate legal risks, ensuring that
they adhere to regulatory standards and avoid potential lawsuits.

6 Related Works
Security and Privacy Analysis of TPLs. The literature exten-
sively examines security and privacy risks associated with third-
party libraries (TPLs) inmobile apps. Various detection techniques [38,
42, 45, 65, 66, 71, 93, 104] and isolation techniques [68, 86, 87] have
been proposed to measure the integration and dependencies of
TPLs. To assess privacy leakage caused by TPLs, researchers have
utilized both static [76] and dynamic [44, 80, 82] program analysis,
revealing the widespread collection of sensitive user data. Addi-
tionally, researchers have identified outdated library versions as a
significant privacy risk factor and proposed auto-update techniques

to mitigate this issue [46, 55, 63]. Misconfigurations by app devel-
opers have also been shown to result in the leakage of sensitive
personal information [33, 72, 84, 90, 102]. Unlike previous studies,
our work proposes PBOM, a novel solution designed to enhance
the transparency, traceability, and accountability of TPLs in the
mobile ecosystem. PBOM aims to mitigate privacy risks by pro-
viding a unified and fine-grained disclosure of TPL data practices,
thereby serving as a proactive defense mechanism against privacy
violations.
Privacy Labels and Other Short-Form Privacy Disclosures.
The Platform for Privacy Preferences Project (P3P) [10], as studied
in works such as [43, 48, 52, 81], served as a predecessor to privacy
labels by allowing websites to express their privacy practices in a
standard machine-readable format [9]. Privacy nutrition labels have
been proposed and studied extensively in the literature [7, 49, 50, 57–
59], aiming to provide clear and concise information about privacy
practices. Previous research has conducted user studies to under-
stand challenges from both developers’ perspectives [67] and end-
users’ perspectives [101]. Recent studies [60, 61, 85, 98], have also
examined the privacy labels of apps, questioning their accuracy and
comprehensiveness. Those study highlights that creating accurate
privacy labels is challenging for developers due to the complexity
of interpreting data flows, which often involve undocumented data
types, purposes, and configurations. The lack of standardized ter-
minology and formats across TPLs further complicates the process,
making it difficult to produce consistent and clear disclosures. Ad-
ditionally, frequent updates to TPLs require ongoing revisions to
privacy labels, leading to inaccuracies that undermine their effec-
tiveness in communicating data practices. In our study, we address
these shortcomings by proposing PBOM, a comprehensive and
fine-grained privacy disclosure mechanism that extends beyond
traditional privacy labels. PBOM aims to enhance transparency
and accountability by providing detailed information about data
sources, data items, configurations, actions, destinations, and proce-
dures, thereby improving the accuracy and effectiveness of privacy
disclosures in the mobile ecosystem.

7 Conclusion
This paper introduces the Privacy Bill of Materials (PBOM) to ad-
dress privacy and compliance issues in mobile apps using third-
party libraries (TPLs). PBOM provides detailed and structured pri-
vacy disclosures, enhancing TPL transparency and accountability.
Our case studies on Radar SDK and Mobiburn illustrate how PBOM
documents data collection practices, sources, purposes, configura-
tions, actions, destinations, and procedures. PBOM empowers app
developers to make informed decisions, protecting user privacy
and reducing legal risks, thus improving privacy accountability in
the mobile software supply chain.

8 Acknowledgment
We would like to express our gratitude to the anonymous reviewers
for their valuable and constructive feedback. This work is supported
in part by the National Science Foundation (CNS-1850725, 2343618)
and Luddy Faculty Fellowship.

 

8



Enhancing Transparency and Accountability of TPLs with PBOM: A Privacy Bill of Materials SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

References
[1] Android Debug Bridge (adb). https://developer.android.com/tools/adb.
[2] apktool. https://apktool.org/.
[3] Branch SDK guidance. https://help.branch.io/using-branch/docs/answering-

the-app-store-connect-privacy-questions.
[4] Facebook Terms of Use. https://www.facebook.com/help/581066165581870.
[5] Mob SDK Guidance. https://www.mob.com/wiki/detailed?wiki=288&id=172.
[6] Mobi Burn: Enabling Mobile Marketing Betting. https://www.mobiburn.com/#/.
[7] Mobile-App Privacy Nutrition Labels Missing Key Ingredients for Suc-

cess. https://cacm.acm.org/magazines/2022/11/265814-mobile-app-privacy-
nutrition-labels-missing-key-ingredients-for-success/fulltext.

[8] okhttp. https://square.github.io/okhttp/.
[9] P3p. https://www.w3.org/TR/P3P/.
[10] Platform for Privacy Preferences Project. https://www.w3.org/P3P/.
[11] PyCaret. https://www.kaggle.com/code/caesarmario/credit-card-approval-

prediction-w-pycaret?scriptVersionId=95713769.
[12] Sentry SDK guidance. https://docs.sentry.io/product/security/mobile-privacy/.
[13] Taking Legal Action Against Those Who Abuse Our Platform.

https://about.fb.com/news/2020/08/taking-legal-action-against-those-
who-abuse-our-platform/.

[14] UI automation tool. https://github.com/macacajs/NoSmoke.
[15] Improving the nation’s cybersecurity: Nist’s responsibilities under the may 2021

executive order. https://www.nist.gov/itl/executive-order-14028-improving-
nations-cybersecurity, 2021.

[16] Chartboost privacy label guideline. https://answers.chartboost.com/en-us/
articles/115001490451, 2023.

[17] CycloneDX. https://cyclonedx.org/docs/1.4/json/#services_items_data_items_
classification, 2023.

[18] CycloneDX Extension. https://cyclonedx.org/use-cases/#properties--name-
value-store, 2023.

[19] Location Request. https://developer.android.com/develop/sensors-and-location/
location/request-updates, 2023.

[20] LogRocket privacy label guideline. https://docs.logrocket.com/reference/apple-
privacy-questionnaire, 2023.

[21] mParticle privacy label guideline. https://docs.mparticle.com/developers/sdk/
ios/ios14/, 2023.

[22] Network traffic monitor. https://www.telerik.com/fiddler, 2023.
[23] Privacy Manifest. https://developer.apple.com/documentation/bundleresources/

privacy_manifest_files?language=objc, 2023.
[24] Software Bill of Materials (SBOM). https://www.cisa.gov/sbom, 2023.
[25] Data and file storage overview. https://developer.android.com/training/data-

storage, 2024.
[26] Google Play’s Data safety section. https://support.google.com/googleplay/

android-developer/answer/10787469?hl=en#zippy=%2Coptional-format-for-
sdks, 2024.

[27] Google Play’s Data safety section. https://support.google.com/googleplay/
android-developer/answer/10787469?hl=en#zippy=%2Cpurposes, 2024.

[28] Manage all files on a storage device. https://developer.android.com/training/
data-storage/manage-all-files, 2024.

[29] Radar SDK Documentation. https://radar.com/documentation/sdk/android,
2024.

[30] Save data in a local database using Room. https://developer.android.com/
training/data-storage/room, 2024.

[31] Save simple data with SharedPreferences. https://developer.android.com/
training/data-storage/shared-preferences, 2024.

[32] UrlRequest. https://developer.android.com/develop/connectivity/cronet/
reference/org/chromium/net/UrlRequest, 2024.

[33] Noura Alomar and Serge Egelman. Developers say the darnedest things: Privacy
compliance processes followed by developers of child-directed apps. Proceedings
on Privacy Enhancing Technologies, 4(2022):24, 2022.

[34] Benjamin Andow, Akhil Acharya, Dengfeng Li, William Enck, Kapil Singh, and
Tao Xie. Uiref: analysis of sensitive user inputs in android applications. In
Proceedings of the 10th acm conference on security and privacy in wireless and
mobile networks, pages 23–34, 2017.

[35] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin Whitaker,
William Enck, Bradley Reaves, Kapil Singh, and Tao Xie. Policylint: investigat-
ing internal privacy policy contradictions on google play. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pages 585–602, 2019.

[36] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin Whitaker,
William Enck, Bradley Reaves, Kapil Singh, and Tao Xie. PolicyLint: Inves-
tigating internal privacy policy contradictions on google play. In 28th USENIX
Security Symposium (USENIX Security 19), pages 585–602, Santa Clara, CA,
August 2019. USENIX Association.

[37] Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William Enck,
Bradley Reaves, Kapil Singh, and Serge Egelman. Actions speak louder
than words:{Entity-Sensitive} privacy policy and data flow analysis with
{PoliCheck}. In 29th USENIX Security Symposium (USENIX Security 20), pages
985–1002, 2020.

[38] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library detection
in android and its security applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 356–367, 2016.

[39] Duc Bui, Yuan Yao, Kang G Shin, Jong-Min Choi, and Junbum Shin. Consistency
analysis of data-usage purposes in mobile apps. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages 2824–2843,
2021.

[40] Alexia Chatzikonstantinou, Christoforos Ntantogian, Georgios Karopoulos, and
Christos Xenakis. Evaluation of cryptography usage in android applications.
EAI Endorsed Transactions on Security and Safety, 3(9):83–90, 2016.

[41] Yi Chen, Mingming Zha, Nan Zhang, Dandan Xu, Qianqian Zhao, Xuan Feng,
Kan Yuan, Fnu Suya, Yuan Tian, and Kai Chen. Demystifying hidden privacy
settings in mobile apps. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 570–586. IEEE, 2019.

[42] Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia, Chenfu Bao, and Tao Wei.
Adaptive android kernel live patching. In USENIX Security Symposium, pages
1253–1270, 2017.

[43] Lorrie Faith Cranor, Serge Egelman, Steve Sheng, Aleecia M McDonald, and
Abdur Chowdhury. P3p deployment on websites. Electronic Commerce Research
and Applications, 7(3):274–293, 2008.

[44] Jonathan Crussell, Ryan Stevens, et al. Madfraud: Investigating ad fraud in
android applications. In Proceedings of the 12th annual international conference
on Mobile systems, applications, and services, pages 123–134, 2014.

[45] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. Keep
me updated: An empirical study of third-party library updatability on android.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2187–2200, 2017.

[46] Yue Duan, Lian Gao, Jie Hu, and Heng Yin. Automatic generation of non-
intrusive updates for third-party libraries in android applications. In RAID,
pages 277–292, 2019.

[47] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An
empirical study of cryptographic misuse in android applications. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security,
pages 73–84, 2013.

[48] Serge Egelman, Lorrie Faith Cranor, and Abdur Chowdhury. An analysis of
p3p-enabled web sites among top-20 search results. In Proceedings of the 8th
international conference on Electronic commerce: The new e-commerce: innovations
for conquering current barriers, obstacles and limitations to conducting successful
business on the internet, pages 197–207, 2006.

[49] Pardis Emami-Naeini, Yuvraj Agarwal, Lorrie Faith Cranor, and Hanan Hibshi.
Ask the experts: What should be on an iot privacy and security label? In 2020
IEEE Symposium on Security and Privacy (SP), pages 447–464. IEEE, 2020.

[50] Pardis Emami-Naeini, Henry Dixon, Yuvraj Agarwal, and Lorrie Faith Cranor.
Exploring how privacy and security factor into iot device purchase behavior. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems,
pages 1–12, 2019.

[51] Jack Gardner, Yuanyuan Feng, Kayla Reiman, Zhi Lin, Akshath Jain, and Norman
Sadeh. Helping mobile application developers create accurate privacy labels. In
2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW),
pages 212–230. IEEE, 2022.

[52] Julia Gideon, Lorrie Cranor, Serge Egelman, and Alessandro Acquisti. Power
strips, prophylactics, and privacy, ohmy! In Proceedings of the Second Symposium
on Usable privacy and security, pages 133–144, 2006.

[53] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. Unsafe
exposure analysis of mobile in-app advertisements. In Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile Networks, pages
101–112, 2012.

[54] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu
Zhang, and Guofei Jiang. {SUPOR}: Precise and scalable sensitive user input
detection for android apps. In 24th USENIX Security Symposium (USENIX Security
15), pages 977–992, 2015.

[55] Jie Huang, Nataniel Borges, Sven Bugiel, and Michael Backes. Up-to-crash:
Evaluating third-party library updatability on android. In 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 15–30. IEEE, 2019.

[56] Haojian Jin, Minyi Liu, Kevan Dodhia, Yuanchun Li, Gaurav Srivastava, Matthew
Fredrikson, Yuvraj Agarwal, and Jason I Hong. Why are they collecting my
data? inferring the purposes of network traffic in mobile apps. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(4):1–27,
2018.

[57] Patrick Gage Kelley, Joanna Bresee, Lorrie Faith Cranor, and Robert W Reeder.
A" nutrition label" for privacy. In Proceedings of the 5th Symposium on Usable
Privacy and Security, pages 1–12, 2009.

[58] Patrick Gage Kelley, Lucian Cesca, Joanna Bresee, and Lorrie Faith Cranor.
Standardizing privacy notices: an online study of the nutrition label approach.
In Proceedings of the SIGCHI Conference on Human factors in Computing Systems,
pages 1573–1582, 2010.

[59] Patrick Gage Kelley, Lorrie Faith Cranor, and Norman Sadeh. Privacy as part of
the app decision-making process. In Proceedings of the SIGCHI conference on

 

9

https://developer.android.com/tools/adb 
https://apktool.org/
https://help.branch.io/using-branch/docs/answering-the-app-store-connect-privacy-questions
https://help.branch.io/using-branch/docs/answering-the-app-store-connect-privacy-questions
https://www.facebook.com/help/581066165581870
https://www.mob.com/wiki/detailed?wiki=288&id=172
https://www.mobiburn.com/#/ 
https://cacm.acm.org/magazines/2022/11/265814-mobile-app-privacy-nutrition-labels-missing-key-ingredients-for-success/fulltext
https://cacm.acm.org/magazines/2022/11/265814-mobile-app-privacy-nutrition-labels-missing-key-ingredients-for-success/fulltext
https://square.github.io/okhttp/
https://www.w3.org/TR/P3P/
https://www.w3.org/P3P/
https://www.kaggle.com/code/caesarmario/credit-card-approval-prediction-w-pycaret?scriptVersionId=95713769
https://www.kaggle.com/code/caesarmario/credit-card-approval-prediction-w-pycaret?scriptVersionId=95713769
https://docs.sentry.io/product/security/mobile-privacy/
https://about.fb.com/news/2020/08/taking-legal-action-against-those-who-abuse-our-platform/
https://about.fb.com/news/2020/08/taking-legal-action-against-those-who-abuse-our-platform/
https://github.com/macacajs/NoSmoke
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://answers.chartboost.com/en-us/articles/115001490451
https://answers.chartboost.com/en-us/articles/115001490451
https://cyclonedx.org/docs/1.4/json/##services_items_data_items_classification
https://cyclonedx.org/docs/1.4/json/##services_items_data_items_classification
https://cyclonedx.org/use-cases/##properties--name-value-store
https://cyclonedx.org/use-cases/##properties--name-value-store
https://developer.android.com/develop/sensors-and-location/location/request-updates
https://developer.android.com/develop/sensors-and-location/location/request-updates
https://docs.logrocket.com/reference/apple-privacy-questionnaire
https://docs.logrocket.com/reference/apple-privacy-questionnaire
https://docs.mparticle.com/developers/sdk/ios/ios14/
https://docs.mparticle.com/developers/sdk/ios/ios14/
https://www.telerik.com/fiddler
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files?language=objc
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files?language=objc
https://www.cisa.gov/sbom
https://developer.android.com/training/data-storage
https://developer.android.com/training/data-storage
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en#zippy=%2Coptional-format-for-sdks
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en#zippy=%2Coptional-format-for-sdks
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en#zippy=%2Coptional-format-for-sdks
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en#zippy=%2Cpurposes
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en#zippy=%2Cpurposes
https://developer.android.com/training/data-storage/manage-all-files
https://developer.android.com/training/data-storage/manage-all-files
https://radar.com/documentation/sdk/android
https://developer.android.com/training/data-storage/room
https://developer.android.com/training/data-storage/room
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/training/data-storage/shared-preferences
https://developer.android.com/develop/connectivity/cronet/reference/org/chromium/net/UrlRequest
https://developer.android.com/develop/connectivity/cronet/reference/org/chromium/net/UrlRequest


SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Yue Xiao, Adwait Nadkarni, and Xiaojing Liao

human factors in computing systems, pages 3393–3402, 2013.
[60] Rishabh Khandelwal, Asmit Nayak, Paul Chung, and Kassem Fawaz. Unpacking

privacy labels: A measurement and developer perspective on google’s data
safety section. arXiv preprint arXiv:2306.08111, 2023.

[61] Simon Koch, Malte Wessels, Benjamin Altpeter, Madita Olvermann, and Mar-
tin Johns. Keeping privacy labels honest. Proceedings on Privacy Enhancing
Technologies, 4:486–506, 2022.

[62] Kyungmin Lee, Jason Flinn, Thomas J Giuli, Brian Noble, and Christopher Peplin.
Amc: Verifying user interface properties for vehicular applications. In Proceeding
of the 11th annual international conference on Mobile systems, applications, and
services, pages 1–12, 2013.

[63] Bodong Li, Yuanyuan Zhang, Juanru Li, Runhan Feng, and Dawu Gu. Appcom-
mune: Automated third-party libraries de-duplicating and updating for android
apps. In 2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 344–354. IEEE, 2019.

[64] Li Li, Tegawendé F Bissyandé, et al. Droidra: Taming reflection to support
whole-program analysis of android apps. 2016.

[65] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An investigation
into the use of common libraries in android apps. In 2016 IEEE 23Rd international
conference on software analysis, evolution, and reengineering (SANER), volume 1,
pages 403–414. IEEE, 2016.

[66] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui
Xue, and Wei Huo. Libd: Scalable and precise third-party library detection in
android markets. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pages 335–346. IEEE, 2017.

[67] Tianshi Li, Kayla Reiman, Yuvraj Agarwal, Lorrie Faith Cranor, and Jason I Hong.
Understanding challenges for developers to create accurate privacy nutrition
labels. In CHI Conference on Human Factors in Computing Systems, pages 1–24,
2022.

[68] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. Efficient privilege de-
escalation for ad libraries in mobile apps. In Proceedings of the 13th annual
international conference on mobile systems, applications, and services, pages 89–
103, 2015.

[69] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. {DECAF}: Detecting and
characterizing ad fraud in mobile apps. In 11th USENIX symposium on networked
systems design and implementation (NSDI 14), pages 57–70, 2014.

[70] Dexin Liu, Yue Xiao, chaoqi Zhang, Kaitao Xie, Xiaolong Bai, Shikun Zhang,
and Luyi Xing. ihunter: Hunting privacy violations at scale in the software
supply chain on ios. 2024.

[71] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar: Fast and
accurate detection of third-party libraries in android apps. In Proceedings of the
38th international conference on software engineering companion, pages 653–656,
2016.

[72] Abraham H Mhaidli, Yixin Zou, and Florian Schaub. " we can’t live without
{Them!}" app developers’ adoption of ad networks and their considerations of
consumer risks. In Fifteenth Symposium on Usable Privacy and Security (SOUPS
2019), pages 225–244, 2019.

[73] Microsoft. Playwright. https://playwright.dev/, 2023.
[74] Ildar Muslukhov, Yazan Boshmaf, and Konstantin Beznosov. Source attribution

of cryptographic api misuse in android applications. In Proceedings of the 2018
on Asia Conference on Computer and Communications Security, pages 133–146,
2018.

[75] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and XiaoFeng
Wang. Uipicker: User-input privacy identification in mobile applications. In
24th USENIX Security Symposium (USENIX Security 15), pages 993–1008, 2015.

[76] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan Zhang, Donglai Zhu, and Min
Yang. Finding clues for your secrets: Semantics-driven, learning-based privacy
discovery in mobile apps. In NDSS, 2018.

[77] Yuhong Nan, Zhemin Yang, Min Yang, Shunfan Zhou, Yuan Zhang, Guofei
Gu, Xiaofeng Wang, and Limin Sun. Identifying user-input privacy in mobile
applications at a large scale. IEEE Transactions on Information Forensics and
Security, 12(3):647–661, 2016.

[78] Suman Nath, Felix Xiaozhu Lin, Lenin Ravindranath, and Jitendra Padhye. Smar-
tads: bringing contextual ads to mobile apps. In Proceeding of the 11th annual
international conference on Mobile systems, applications, and services, pages 111–
124, 2013.

[79] Damilola Orikogbo, Matthias Büchler, and Manuel Egele. Crios: Toward large-
scale ios application analysis. In Proceedings of the 6th Workshop on Security
and Privacy in Smartphones and Mobile Devices, pages 33–42, 2016.

[80] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Mark Allman, Christian Kreibich, Phillipa Gill, et al. Apps, trackers,
privacy, and regulators: A global study of the mobile tracking ecosystem. In The
25th Annual Network and Distributed System Security Symposium (NDSS 2018),
2018.

[81] Robert W Reeder. Expandable Grids: A user interface visualization technique and
a policy semantics to support fast, accurate security and privacy policy authoring.
PhD thesis, Carnegie Mellon University, 2008.

[82] Jingjing Ren, Martina Lindorfer, Daniel J Dubois, Ashwin Rao, David Choffnes,
and Narseo Vallina-Rodriguez. A longitudinal study of pii leaks across android

app versions. In Proceedings of the 25th Network and Distributed System Security
Symposium (NDSS 2018), 2018.

[83] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David
Choffnes. Recon: Revealing and controlling pii leaks in mobile network traffic.
In Proceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services, pages 361–374, 2016.

[84] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas
Razaghpanah, Narseo Vallina-Rodriguez, Serge Egelman, et al. “won’t somebody
think of the children?” examining coppa compliance at scale. In The 18th Privacy
Enhancing Technologies Symposium (PETS 2018), 2018.

[85] David Rodriguez, Akshath Jain, Jose M Del Alamo, and Norman Sadeh. Com-
paring privacy label disclosures of apps published in both the app store and
google play stores. In 2023 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 150–157. IEEE, 2023.

[86] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin, and Taesoo Kim. Flex-
droid: Enforcing in-app privilege separation in android. In NDSS, 2016.

[87] Shashi Shekhar, Michael Dietz, and Dan S Wallach. Adsplit: Separating smart-
phone advertising from applications. In USENIX security symposium, volume
2012, 2012.

[88] Shao Shuai, DongGuowei, Guo Tao, Yang Tianchang, and Shi Chenjie. Modelling
analysis and auto-detection of cryptographic misuse in android applications. In
2014 IEEE 12th International Conference on Dependable, Autonomic and Secure
Computing, pages 75–80. IEEE, 2014.

[89] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krish-
nan, Jaspreet Bhatia, Travis D Breaux, and Jianwei Niu. Toward a framework for
detecting privacy policy violations in android application code. In Proceedings
of the 38th International Conference on Software Engineering, pages 25–36, 2016.

[90] Mohammad Tahaei, Kopo M Ramokapane, Tianshi Li, Jason I Hong, and Awais
Rashid. Charting app developers’ journey through privacy regulation features
in ad networks. Proceedings on Privacy Enhancing Technologies, 1:24, 2022.

[91] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009.

[92] Isabel Wagner. Privacy policies across the ages: content of privacy policies
1996–2021. ACM Transactions on Privacy and Security, 26(3):1–32, 2023.

[93] Haoyu Wang and Yao Guo. Understanding third-party libraries in mobile app
analysis. In 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pages 515–516. IEEE, 2017.

[94] Jice Wang, Yue Xiao, Xueqiang Wang, Yuhong Nan, Luyi Xing, Xiaojing Liao,
JinWei Dong, Nicolas Serrano, Haoran Lu, XiaoFeng Wang, et al. Understanding
malicious cross-library data harvesting on android. In 30th USENIX Security
Symposium (USENIX Security 21), pages 4133–4150, 2021.

[95] Jice Wang, Yue Xiao, Xueqiang Wang, Yuhong Nan, Luyi Xing, Xiaojing Liao,
JinWei Dong, Nicolas Serrano, Haoran Lu, XiaoFeng Wang, and Yuqing Zhang.
Understanding malicious cross-library data harvesting on android. In 30th
USENIX Security Symposium (USENIX Security 21), pages 4133–4150. USENIX
Association, August 2021.

[96] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin, Travis D Breaux,
and Jianwei Niu. Guileak: Tracing privacy policy claims on user input data
for android applications. In Proceedings of the 40th International Conference on
Software Engineering, pages 37–47, 2018.

[97] Yue Xiao, Zhengyi Li, Yue Qin, Xiaolong Bai, Jiale Guan, Xiaojing Liao, and Luyi
Xing. Lalaine: Measuring and characterizing non-compliance of apple privacy
labels. 2023.

[98] Yue Xiao, Zhengyi Li, Yue Qin, Xiaolong Bai, Jiale Guan, Xiaojing Liao, and
Luyi Xing. Lalaine: Measuring and characterizing {Non-Compliance} of apple
privacy labels. In 32nd USENIX Security Symposium (USENIX Security 23), pages
1091–1108, 2023.

[99] Yue Xiao, chaoqi Zhang, Yue Qin, Fares Fahad S Alharbi, Luyi Xing, and Xiaojing
Liao. Measuring compliance implications of third-party libraries’ privacy label
disclosure guidelines. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security, 2024.

[100] Le Yu, Xiapu Luo, Xule Liu, and Tao Zhang. Can we trust the privacy policies
of android apps? In 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 538–549. IEEE, 2016.

[101] Shikun Zhang, Yuanyuan Feng, Yaxing Yao, Lorrie Faith Cranor, and Norman
Sadeh. How usable are ios app privacy labels? UMBC Faculty Collection, 2022.

[102] Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Travis Breaux, and Jianwei Niu.
How does misconfiguration of analytic services compromise mobile privacy?
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering, pages 1572–1583, 2020.

[103] Ying Zhang, Md Mahir Asef Kabir, Ya Xiao, Danfeng Yao, and Na Meng. Au-
tomatic detection of java cryptographic api misuses: Are we there yet? IEEE
Transactions on Software Engineering, 49(1):288–303, 2022.

[104] Yuan Zhang, Jiarun Dai, Xiaohan Zhang, Sirong Huang, Zhemin Yang, Min
Yang, and Hao Chen. Detecting third-party libraries in android applications
with high precision and recall. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 141–152. IEEE,

 

10

https://playwright.dev/


Enhancing Transparency and Accountability of TPLs with PBOM: A Privacy Bill of Materials SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

2018.
[105] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu, Florian

Schaub, Shomir Wilson, Norman Sadeh, Steven Bellovin, and Joel Reidenberg.
Automated analysis of privacy requirements for mobile apps. In 2016 AAAI Fall

Symposium Series, 2016.
[106] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. Why does your data leak?

uncovering the data leakage in cloud from mobile apps. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 1296–1310. IEEE, 2019.

 

11


	Abstract
	1 Introduction
	2 Background
	2.1 Bills of Materials
	2.2 Mobile TPL Data Practices

	3 PBOM Design
	3.1 Design Goal
	3.2 PBOM Design
	3.3 PBOM Use Cases

	4 PBOM Engine: A PBOM Generation Plugin
	4.1 Configured Wrapper App Creation
	4.2 UI & Static & Dynamic Analysis
	4.3 PBOM Generation

	5 Case Study
	5.1 Expressing Mobile App with Configurable TPL
	5.2 Expressing Cross-TPLs Data Processing Operations

	6 Related Works
	7 Conclusion
	8 Acknowledgment
	References



