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ABSTRACT

Prior work has developed numerous systems that test the security

and safety of smart homes. For these systems to be applicable in

practice, it is necessary to test them with realistic scenarios that

represent the use of the smart home, i.e., home automation, in the

wild. This demo paper presents the technical details and usage of

Hεlion, a system that uses n-gram language modeling to learn the

regularities in user-driven programs, i.e., routines developed for the
smart home, and predicts natural scenarios of home automation,

i.e., event sequences that reflect realistic home automation usage.

We demonstrate the HεlionHA platform, developed by integrating

Hεlion with the popularHome Assistant platform. HεlionHA allows

an end-to-end exploration of Hεlion’s scenarios by executing them

as test cases with real and virtual smart home devices.

The demo video can be found here: https://youtu.be/o9g0wKiJJMI
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1 INTRODUCTION

In smart home platforms, automation is driven by trigger-action

programs known as routines, wherein a certain action event is pro-

grammed to occur after a certain trigger, e.g., IF the user is home

(trigger), THEN turn the camera off (action). Prior work has ana-

lyzed routines created by developers (i.e., IoT apps) to understand
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the security and safety issues in home automation [2–4, 8–10, 17].

However, IoT apps defined by developers may not reflect realistic

home automation use in the wild, i.e., the events that are likely to

actually occur in end-user homes. The unavailability of realistic

home automation usage makes it difficult to design or evaluate

systems designed to analyze/test home automation in a practical

manner.

For instance, consider the problem of testing the effectiveness

of a security analysis/system for evaluating home automation. At

present, researchers generally evaluate their systems with random

permutations of smart home events [4, 8, 17], which may not rep-

resent realistic home automation usage in the wild, and lead to

an impractical design or evaluation of the systems. One possible

solution to this problem would be to collect real execution traces of

smart home events from end-user homes, and then use those traces

to build/evaluate systems. However, not only is this approach ex-

tremely privacy-invasive (i.e., as the traces also represent physical

events in the user’s home), but may also be ineffective, since the

traces may contain superfluous events that represent platform and

device-specific intricacies, i.e., "noise", which may distract from the

real, semantically-relevant, smart home usage. Thus, there is a need

for synthetically generated but realistic home automation scenarios

that can be used to generate effective test cases.

We previously built a framework, Hεlion [12], that leverages

user-driven routines, i.e., routines created by end-users using simple

trigger-action user interfaces provided by most popular smart home

platforms (e.g., NEST [13], SmartThings [15]). User-driven routines

represent the real home automation requirements of users, as they

allow end-users to express their home automation workflows/pro-

grams via the UI, without writing a single line of code, and hence,

eliminating the need for (or relevance of) developer-provided IoT

apps. That is, routines obtained from a user, combined with simple

cues regarding their order/frequency of execution, form the "home

automation program" for that user. Hεlion builds upon prior work

in the SE domain on leveraging the naturalness in code for tasks

such as code completion [6], and similarly, learns the regularities

in a corpus of such home automation programs derived from end-

users using n-gram LMs. Hεlion’s model can then be used as a

sequence generator to predict natural scenarios, i.e., realistic home

automation event sequences based on a given history of events.

These natural scenarios can then be used as test cases in the design

and evaluation of security systems built for the smart home, e.g.,
in lieu of random events used by prior work. The full details of

Hεlion’s methodology, design considerations, evaluation results,
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and discussion of the findings are described in our past study [12].

The source code of Hεlion is also publicly available on GitHub [16].

This demo paper describes the implementation and usage of

Hεlion, and particularly, the implementation of HεlionHA, an exten-

sion to the popularHome Assistant platform [7] with Hεlion, which

enables users to generate natural scenarios as well as automatically

execute them as test cases with real/virtual devices connected to

the platform. HεlionHA first provides a UI for configuring Hεlion’s

model and automatically generating scenarios adhering to the con-

figuration. These scenarios are in the form of sequences of event

tokens predicted by Hεlion. HεlionHA converts the event tokens

from the sequences intoHome Assistant-specific events, and passes
the events on to the system by interfacing with relevant compo-

nents (specifically, the Event Bus), and in this manner, executes the
scenario on the platform. HεlionHA can be connected to physical

devices, or virtual devices configured via the UI, to execute a wide

variety of Hεlion’s scenarios. HεlionHA’s dashboard also enables

the user to monitor various smart home states during the execution

of a scenario. The source code and documentation of Hεlion on

Home Assistant, i.e., HεlionHA, are publicly available [1].

The paper is organized as follows: Section 2 discusses the nec-

essary background on language modeling and the fundamentals

of Home Assistant. Section 3 provides a brief overview of Hεlion.

Section 4 presents the detailed design and implementation of Hεlion

and Section 5 presents the integration of Hεlion into Home Assis-
tant, i.e., HεlionHA. Finally, Section 6 concludes the paper.

2 BACKGROUND

This section provides the rationale behind choosing the n-gram

language model for Hεlion and a brief overview of Home Assistant.

2.1 N-gram Language Model

Hindle et al. demonstrated that source code written by humans is

just like natural language and thus, contains patterns that make it

predictable [6]. Similarly, user-driven routines are also natural as

these are created by humans to fulfill a particular workflow, and

hence, may contain regularities/patterns that are predictable. Based

on this, we use statistical languagemodeling to learn the regularities

in home automation sequences composed of user-driven routines

(i.e., which represent the end-user’s overall “program”), and use the

model to predict natural scenarios of home automation.

In general, language models (LMs) measure the probability of a

sentence 𝑠 = 𝑤𝑚
1

= 𝑤1𝑤2 ...𝑤𝑚 , given the probabilities of the indi-

vidual words in the sentence (i.e.,𝑤𝑚
1
), as previously estimated from

a training corpus. This ability enables prediction, i.e., predicting
the next most probable word that can follow a sequence of words,

known as the “context” or “history”. When modeling smart home

routines, we define a “sentence” to represent a sequence of home

automation events, wherein the “words” (a.k.a tokens) are smart

home events (e.g.,<LightBulb, switch, ON>).
In Hεlion, we specifically use n-gram LMs as they assume the

Markov property, i.e., instead of computing the conditional proba-

bility given an entire event or language history, we can approximate

it by considering only a few tokens from the past as the history. The

intuition behind n-gram LMs applied to natural language is that

shorter sequences of words are more likely to co-occur in training
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Figure 1: An overview of the Hεlion framework, which models

home automation sequences to construct natural scenarios. Stake-

holders use tools that analyze or execute scenarios to obtain action-

able outcomes.

corpora, thus providing the model with more examples to condi-

tion token probabilities, enhancing its predictive power. Using the

n-gram model, we estimate the probability of the event sequence

𝑠 = 𝑒𝑚
1

= 𝑒1𝑒2 ...𝑒𝑚 as follows:

𝑝 (𝑒𝑚
1
) =

𝑚∏
𝑖=1

𝑝 (𝑒𝑖 |𝑒𝑖−11
) ≈

𝑚∏
𝑖=1

𝑝 (𝑒𝑖 |𝑒𝑖−1𝑖−𝑛+1) (1)

2.2 Home Assistant

Home Assistant is an open-source software platform for home

control and automation [7]. Here we briefly describe the key areas

of Home Assistant that are necessary for integrating Hεlion into it

to develop HεlionHA.

The Home Assistant dashboard: The dashboard is a customizable

page where users can manage their home using HomeAssistant’s

mobile and Web interfaces. The overview dashboard is the first

thing that users see after installing Home Assistant. The dashboard
displays information connected to and available in Home Assistant,

including the connected devices, both real and virtual.

Cards: The Home Assistant Dashboard is composed of cards. Each

card has its own configuration options, which users can configure

as required. Moreover, users can build and use their own cards.

One of the most common cards is the “entities” card which groups

abstract items together into lists.

Configuration: Other than the user interface, users can configure

their Home Assistant instance by editing configuration.yaml. The
configuration.yaml file contains integrations to be loaded along

with their configurations.

3 HELION

Figure 1 shows Hεlion, a data-driven framework that models the

regularities of user-driven home automation, generates natural

home automation scenarios, and provides stakeholders with tools

to use the scenarios and obtain actionable outcomes.

The first step of Hεlion is data collection, i.e., collecting user-
driven routines from users along with execution indicators. Exe-
cution indicators are clues about when or how frequently those

user-driven routines are scheduled to execute. The next step is in-

formed scheduling where the routines and execution indicators
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are transformed into home automation event sequences, which rep-

resent the user’s “program” for a certain duration (e.g., a month).

During themodeling phase, Hεlion uses n-gram LMs on the corpus

of event sequences obtained from users. Finally, during scenario

prediction, Hεlion generates natural scenarios, which can be used

by stakeholders for testing the smart home, such as executable test
cases in HεlionHA to be executed with real and virtual devices.

4 DESIGN AND IMPLEMENTATION

This section describes the design and implementation of Hεlion,

elaborating on its four steps: data collection and representation,

informed scheduling, modeling, and scenario prediction.

4.1 Data Collection and Representation

The most practical way to collect user-driven routines is collecting

routines directly from users. To do this, we conducted a user survey

with 40 users and obtained 273 routines (233 unique) created by the

users. After collecting data from users, we transformed those into

home automation tokens. Anonymized datasets and code for the

Hεlion are available at [16].

Collecting Data from Users:We used the survey to collect the

routines from users. In the survey, participants were asked to cre-

ate routines as in the “IF” and “THEN” trigger-action format, but

expressed in plain English text, allowing users to express any func-

tionality desired without enforcing artificial constraints. Here is

the raw routine from our dataset:

IF the motion is detected THEN camera takes a picture

After creating routines, participants specified execution indica-

tors, i.e., the time-range, day-range, and frequency indicators for

their routines (described in detail in Section 4.2).

Representing smart home events as tokens: A token is a home

automation event parsed from a structured natural language routine.

Here, an event can denote a change in the state of a device (e.g.,
door locked) or the home (e.g., the user is away). We define Hεlion’s

home automation event token as:

𝑒𝑖 :=< 𝑑𝑒𝑣𝑖𝑐𝑒𝑖 , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 , 𝑎𝑐𝑡𝑖𝑜𝑛𝑖 >

where 𝑑𝑒𝑣𝑖𝑐𝑒𝑖 represents the device (e.g., door lock, camera), the

𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 corresponds to one of a predefined set of device attributes

(e.g., the lock attribute for the door lock, which can take the values

Locked/Unlocked), and 𝑎𝑐𝑡𝑖𝑜𝑛𝑖 represents the change of state, and

hence, the current value of 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 . Using this design, the exam-

ple routine discussed previously (i.e., the motion sensor/camera)

would be tokenized as (terms from SmartThings capabilities [14]):

< 𝑚𝑜𝑡𝑖𝑜𝑛_𝑠𝑒𝑛𝑠𝑜𝑟, 𝑚𝑜𝑡𝑖𝑜𝑛, detected>,

< 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑐𝑎𝑚𝑒𝑟𝑎, 𝑖𝑚𝑎𝑔𝑒, take>

4.2 Informed Scheduling

A home automation event sequence is an approximate ordered

representation of how the routines would execute in the user’s

home in a particular timeframe. Hεlion transforms the tokenized

routines specified by a particular user into a home automation

event sequence. Here, the order is important for generating home

automation sequences. Therefore, we introduce a novel abstraction

for users to stipulate the approximate order in which routines may

execute, i.e., routine-specific execution indicators. Users may be

able to describe when they perform certain personal tasks which

trigger home automation,i.e., when they come home, go to work,

bed, cook, or do laundry. Execution indicators allow us to capture

such factors, which we then leverage to schedule routines to create

home automation sequences. This is why we define the approach

as informed scheduling, as the scheduling mechanism is informed

by the user’s understanding of their own home use.

Execution indicators constitute the time and frequency of the

potential execution of a routine. For Hεlion, we consider three types

of indicator: (1) the time-range indicator (e.g., early morning, noon,

and night), (2) the day-range indicator (e.g., mostly on weekdays,

andmostly onweekends), and (3) the frequency indicator (e.g.,many

times a day, few times a day, few times a month). Routines collected

from users have been scheduled in the time series based on these

indicators, also provided by the users, we extract the ordered set of

routines from this month-long series as the execution sequence and

construct the HOME corpus. The HOME corpus consists of 30,518

events, from 40 month-long sequences (i.e., 40 users), generated

from 273 routines (233 unique) and their execution indicators.

4.3 Modeling

Hεlion uses the n-gram LM to learn the regularities in user-driven

home automation sequences. For the Hεlion’s n-gram model, we

choose 𝑛 ≥ 3. Choosing values of 𝑛 < 3 can either completely

ignore the context or capture simple relationships that are already

observable from data. Considering larger values of 𝑛, i.e., 𝑛 ≥ 3,

the model can learn non-obvious regularities in home automation

corpora. However, considering too much of the event history (i.e., a
very large 𝑛) may actually hurt the predictive power of the model.

Moreover, longer sequences may be relatively uncommon in the

wild, even if they are realistic and useful for uncovering serious

security/safety flaws. Therefore, choosing 𝑛 ≥ 3 leads to a better

model. We used interpolated smoothing methods since it performs

well with lower-order (i.e., 3-4 gram) models [5].

4.4 Scenario Prediction

Hεlion considers the language model as a sequence generator that

can produce an arbitrarily long series of events, i.e., home automa-

tion scenarios.

For security and safety-related testing, researchers require both

natural scenarios that are reasonably likely to occur in end-user

homes and unnatural scenarios that demonstrate unsafe situations.

Hence, we designed Hεlion to generate two corresponding flavors

of scenarios:

The up flavor, natural scenarios: This is the default flavor where

Hεlion predicts the most probably event(s) given a history, i.e.,
generates natural home automation scenarios.

The down flavor, unrealistic scenarios: The down flavor gener-

ates unrealistic/unnatural scenarios by predicting the most improb-

able event(s) given a particular history.

5 IMPLEMENTATION OF HΕLIONHA

We implemented HεlionHA by integrating Hεlion with Home As-
sistant. In this section, we describe how we implement Hεlion on

the Home Assistant platform to develop HεlionHA as well as how

users can use it.
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Figure 2: An overview of the Hεlion on Home Assistant platform

5.1 Conversion of Hεlion Tokens to Entities and

Cards in Home Assistant
Entities in Home Assistant are abstract objects that hold the state

of the simulated device, i.e., each entity is Home Assistant’s repre-
sentation of the function of a device. To elaborate, Home Assistant
allows users to connect to physical devices, and usually, entities

only serve as the interface to those devices. As we defined in Sec-

tion 4, a token is a Hεlion’s representation of a device, its attribute,

and its state (i.e., token, 𝑒𝑖 = < 𝑑𝑒𝑣𝑖𝑐𝑒𝑖 , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑖 , 𝑎𝑐𝑡𝑖𝑜𝑛𝑖 >). To

implement HεlionHA, we needed to convert each token to an entity

name. We implemented the parse_token.py script which takes in a

token as an input and returns the corresponding entity. If the token

contains multiple devices, then each entity name will be separated

by a space. This entity is then added to the ui-lovelace.yaml or

helion.yaml file.

We used two types of entities in HεlionHA: (i) input_boolean

for keeping track of two states (e.g., lightbulb has two states: on

or off). (ii) input_select for keeping track of multiple or complex

states (e.g., the motion sensor has four states: activated, deactivated,

detected, and not_detected).

Cards are the components that are displayed in the Home Assis-
tant dashboard and represent entities. The state of the entity can

be seen or changed through cards. In our implementation, each

card is set up to correspond to an entity. Users can also input a

token through an input card which will run a script to modify

helion.yaml. We implemented a script change_ui_cards.py, that is

used to create the cards that are displayed on the Home Assistant
dashboard. When tokens are output from the Hεlion server, we take

the tokens that are output and pass them to this script, which finds

the corresponding card and modifies helion.yaml.

5.2 Predicting Scenarios using the HεlionHA UI

and Executing them as Test Cases

In this section, we describe how exactly Hεlion integrates with

HomeAssistant, in terms of both the user interface (i.e., theHεlionHA
dashboard) as well as the backend (i.e., the Hεlion server).

We created a custom page on Home Assistant where the UI

specific to Hεlion resides. The new page is built on top of Lovelace

UI which is a customizableHome Assistant dashboard [11]. Figure 2

shows the UI of HεlionHA. The UI of HεlionHA has three main

parts: Settings, Input, and Output, each consisting of several cards.

The user first specifies the settings, particularly the order (3-gram

or 4-gram), and flavor (up or down). These elements are stored as

input_select entities in the backend. The user then specifies the

event history, i.e., the input events that form the context follow-

ing which Hεlion predicts future events. When “Run Helion” is

clicked on the dashboard UI, HεlionHA takes the user-provided

history/input events from the input_list and reprocesses them to

send to the Hεlion server (which executes in the backend). The

Hεlion server then provides predictions given the settings and in-

puts, and HεlionHA transforms them into Home Assistant events,
and displays the same in the dashboard.

To elaborate, the scenario, i.e., predictions generated by the

Hεlion server are gathered in up.tsv and down.tsv based on which

flavor the user requested. Note that these predicted events are

Hεlion’s tokens, i.e., in the form < 𝑑𝑒𝑣𝑖𝑐𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑠𝑡𝑎𝑡𝑒 >, which

must now be converted to HεlionHA’s events, to be executed with

real and virtual devices on the platform.

To generate each Home Assistant event (represented as [de-

vice.attribute, state]) corresponding to a predicted token, we invoke

HεlionHA’s call_service method, which takes the entity_id (i.e.,
the device) and the target_state (i.e., the state) as parameters, along

with the method to call (i.e., the attribute) to properly set the en-

tity_id to its target_state. This is equivalent to sending a command

to a physical (or virtual) device. In essence, after the call_service

method is invoked, the device.attribute in theHome Assistant token
is set to the state specified within that token. When the token is

executed, it is broadcast as an event in Home Assistant’s Event Bus
to let other entities (and automation) know that a state change has

occurred. Finally, it reloads the UI to display the updated states of

the entities.

6 CONCLUSION

This tool demonstration paper describes the implementation and

usage of Hεlion, a framework for predicting natural scenarios for

home automation to enable the testing of security and safety solu-

tions built for the smart home. Further, we develop and describe

Hεlion’s extension to the Home Assistant platform, HεlionHA,

which allows end-users to generate diverse scenarios with vari-

ous model parameters (e.g., varying the 𝑛 or the prediction flavor),

and automatically execute the scenarios as test cases with real and

virtual devices.
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