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ABSTRACT
Modern smart home platforms facilitate home automation using
trigger-action routines. While routines enable flexible automation,
they may also cause serious threats to system integrity: untrusted
third-parties may use platform APIs to modify the abstract home
objects (AHOs) that high-integrity devices (e.g., security camera)
rely on (i.e., as triggers). As most accesses to AHOs are legitimate,
removing the permissions or applying naive information flow con-
trols would not only fail to prevent these problems, but also break
useful functionality. Therefore, this paper proposes the alternate ap-
proach of home abstraction endorsement, which endorses a proposed
change to an AHO by correlating it with expected environmental
changes. We present the HomeEndorser framework, which provides
a policy model to express specific changes in device states as en-
dorsement policy templates that are automatically instantiated in a
given configuration (based on device availability/placement), and
a platform-based reference monitor to mediate all API requests to
change AHOs. We implement HomeEndorser as an enhancement to
the HomeAssistant platform, and demonstrate less than 10% perfor-
mance overhead and no false alarms under realistic usage scenarios,
as well as derive policy templates for 6 key AHOs.
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1 INTRODUCTION
The popularity of smart home devices [55] can be attributed in part
to the convenience of home automation, wherein smart home devices
automatically react to changes in the user’s physical environment.
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For example, the user may configure a security camera to begin
recording when they leave home, but turn OFF when they return
to preserve their privacy [35]. Such automation is expressed using
trigger-action programs known as routines, that execute an action
(turning camera OFF) in response to a trigger (“away” to “home”).

Routines are often enabled via third-party integrations that au-
tomate device-actions by leveraging platform APIs to modify two
distinct types of objects, device states (e.g., the ON/OFF state of a
light bulb), and abstract home objects (AHOs) that are not device-
specific (e.g., home/away, hereby referred to as the home AHO).

A particularly dangerous attack vector that emerges from this set-
ting is where adversaries gain privileged access to devices indirectly,
by falsifying an AHO that a high-integrity device depends on via a
routine. For instance, consider a situation wherein an adversary may
want to disable the security camera to perform a burglary unnoticed,
but may not have direct API access to it. An adversary with API
access to modify an AHO that the security camera depends upon to
deactivate, such as home/away being set to “home,” may disable the
security camera without direct access [29, 30].

A naive approach to address such false AHO-changes would be
to prevent third-parties from accessing AHOs altogether, or to se-
verely restrict permissions based on static [34, 44, 58] or runtime
context [27]. However, in practice, such solutions may result in infea-
sible usability penalties, as AHOs are often computed via third-party
services of the user’s choice that infer AHOs by querying a combi-
nation of device states [22], use other (proprietary) approaches [51],
or enable the user to set them [31]. Thus, we instead recognize that
at its core, this is an integrity problem analogous to those seen in
operating systems: a high-integrity process (here, the security cam-
era) relies on the value of an object (i.e., the home AHO) that can
be modified by untrusted parties. Hence, we must directly address
the lack of integrity validation of AHO changes in the smart home.

Information flow control (IFC) has often been proposed to ensure
the integrity of information consumed by sensitive processes [2,
15, 16, 33, 37, 65], through dominance checks that regulate flows
based on subject and object labels [2]. A simple IFC solution in
this case would be to mark AHOs such as home as high integrity,
while marking third-party services as low integrity, which effectively
results in preventing third-parties from modifying AHOs. However,
such restrictions may prevent valid changes to AHOs from services
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chosen by the user, resulting in false denials from the user’s perspec-
tive; e.g., 19/33 NEST integrations from a prior dataset [29] would
be blocked due to such restrictive labeling.

IFC systems rely on endorsement [4, 33, 64, 65] to overcome this
limitation, allowing trusted programs to change labels of objects to
permit flows that would normally violate IFC. However, determining
the conditions where an endorsement is allowable in IoT systems
is a challenge; indeed, prior work has often avoided addressing this
directly, and instead facilitates endorsement by assigning the author-
ity to certain trusted high-integrity processes, thereby delegating the
task of how to endorse correctly to the programmer or administra-
tor [8, 32, 33, 48]. However, in our case, smart home users may lack
information about dependencies among devices and AHOs to do this
correctly. So, we ask instead: Is there something else we can rely on
to provide endorsement for practical integrity validation?

Yes – the cyber-physical nature of the smart home provides us
with a unique opportunity for practical endorsement, in the form of
ground truth observations from devices (i.e., device state changes)
that can validate proposed changes to AHOs. For instance, we can
endorse the change to the home AHO (from “away” to “home”)
if the door lock was legitimately unlocked (i.e., with the correct
keycode) recently, as it represents the home owner’s intent and
attempt to enter the home. In fact, rather than only depending on
one device, we can leverage all the devices that may observe state
changes that may correlate with each sensitive AHO change, such
as motion sensors, microphones, etc. that may be available to detect
changes that support the home AHO change. Thus, we state the
following claim that forms the foundation of this work:

Abstract home objects (AHOs) shared among third-party services
and devices for the purpose of home automation are inherently tied
to a home’s physical state. Thus, any state change or modification to
an AHO via an API call can be endorsed using the local context of
the home, consisting of changes in a combination of device states.

Contributions: We introduce the paradigm of home abstraction
endorsement to validate changes to AHOs initiated by untrusted
API calls, and propose the HomeEndorser framework to enable it.
HomeEndorser does not continuously monitor AHOs, but focuses
on API-induced changes to AHOs, and performs a sanity check
using policies that rely on recent physical state changes in smart
home devices. If the check fails, the state change is denied, and
the user is informed. HomeEndorser’s preemptive action prevents
future automation based on maliciously changed AHOs. We make
the following contributions in exploring this novel design space:

1. Home Abstraction Endorsement: We introduce home abstrac-
tion endorsement, which leverages local device state changes to
endorse proposed AHO-changes, thereby making IFC endorsement
practical by exploiting the cyber-physical nature of the smart home.

2. The HomeEndorser Framework: We design the HomeEndorser
framework consisting of (1) a policy model that allows a unified
expression of location-specific device instances within a single pol-
icy (e.g., endorsing home via multiple physical entry points), (2)
a platform-based reference monitor that mediates sensitive state
changes using these policies, and finally, (3) a mechanism to enable
experts to generate endorsement policy templates (defined once for

all homes), which HomeEndorser then automatically instantiates for
each home, enforcing the most restrictive but feasible policy.

3. Evaluation: We implement HomeEndorser on HomeAssistant, a
popular open-source platform, and evaluate it with extensive experi-
mental and empirical analyses. (1) We demonstrate that the home
abstraction endorsement is feasible, even with a limited set of cor-
relating devices, by generating policies to endorse changes to the
home AHO. (2) We demonstrate the generality of our policy model
by identifying several attributes that may be used to endorse five
additional AHOs. (3) We show that HomeEndorser is not susceptible
to false denials, and in fact, may prevent accidental unsafe situations,
by systematically testing it using 10 home usage scenarios, drawn
from prior work [28], and 400 realistic event sequences [35], in a
smart home (apartment) testbed. (4) We demonstrate the effective-
ness of HomeEndorser’s integrity validation using specific attack
scenarios. (5) We measure HomeEndorser’s practical performance
overhead with micro/macro benchmarks (9.7-12.2% on average).
(6) Finally, we demonstrate the modest effort required to gener-
ate policy templates, configure HomeEndorser in user homes, and
integrate HomeEndorser in popular platforms.

2 MOTIVATION
Instead of cloud-hosted ”apps“, current smart home platforms (e.g.,
SmartThings) provide API access to (1) device states of individual
devices (e.g., ON/OFF state), and (2) abstract home objects (AHOs)
that are not associated with any specific device (e.g., the home
AHO to indicate whether the user is home or away). This allows for
seamless integration with third-party services (e.g., IFTTT [24]).

Need for Integrity Validation of AHOs: AHOs are a key compo-
nent of routines, as they form the conditions that need to be met for
a routine to execute, e.g., turn the security camera on when user is
home. In fact, our empirical analysis of 184 SmartThings market-
place apps uncovered 33 unique flows to security-sensitive devices
through AHOs (full list in online appendix [21]). Since AHOs can be
designated by the user to be set in several ways, such as via a direct
command [31], a third-party service computing home AHO based
on phone’s location [57], or a proprietary/undisclosed method/de-
vice [51], this exposes a dangerous attack vector where adversaries
can gain privileged access to security-sensitive devices (e.g., door
lock) indirectly by falsifying an AHO’s state. For instance, an ad-
versary Bob who cannot compromise or modify a high-integrity
device directly can modify AHOs directly through an API to trigger
targeted routines and transitively attack the device.

Therefore, this paper recognizes this problem as a smart home-
specific instance of the classical OS integrity problem (e.g., Biba [2]),
wherein a high-integrity process (i.e., the camera) relies on an object
(i.e., the home AHO) which can also be modified by low-integrity
process (e.g., the Kasa integration). Similar to OSes, platforms must
provide systematic integrity protections for high-integrity objects
(i.e., AHOs) since untrusted principles can access them in many ways
(e.g., numerous API calls or routines) to manipulate high-integrity
subjects (e.g., security sensitive devices).

Consider the following motivating example involving an attack
on a high-integrity device via the home AHO (inspired by a demon-
strated attack from prior work by Kafle et al. [29, 30]):
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Figure 1: An attack on the security camera through the manipulation
of two shared state objects by adversary-controlled integrations.

Motivating Example: Alice has configured two routines in her home
(advertised by Simplisafe [50] and NEST [40]): (R1) the camera
turns ON when Alice leaves home for monitoring, and (R2) the
camera turns OFF when Alice returns home. Bob seeks to burglarize
Alice’s home without being monitored by the camera, but does not
have direct API access to the camera. However, Bob controls one (or
more) third-party services connected to Alice’s home, either because
Alice installed Bob’s service, or Bob compromised a vulnerable
service (e.g., the TP-link Kasa integration via MiTM attack, as
demonstrated in prior work [29, 30]). Thus, Bob changes home
to the value “home”, falsely suggesting that Alice is home and
triggering (R1), thereby disabling the camera, as shown in Figure 1.

This problem is not just limited to the home AHO. Consider
the security_state AHO, also used in routines (e.g., from
Ring [45], from TotalConnect [1]) to control security devices, which
are ”armed“ when security_state is set to “deter”, and ”dis-
armed“ when it is set to “ok”. If Bob controls a service with access to
security_state, he can set it to “ok” and disable the camera.

Threat Model: In line with the motivating example, we consider an
adversary who controls/compromises any third-party service con-
nected to the target‘s home, with the objective to indirectly modify
high-integrity devices. Such third-party services can use the platform
APIs to create and trigger automations via AHOs. Similar to prior
work dealing with API misuse [5, 6, 13, 36], we assume the platform
to be trusted and devices to be tamper-proof, as an attacker with
direct access to either can simply set the device to their desired state
without having to use the API.

3 LIMITATION OF PRIOR APPROACHES
Based on the threat model, we now discuss the three main limitations
from prior approaches in addressing this problem:

1. Breaking existing functionalities:: As high-integrity devices
rely on AHOs such as home, traditional wisdom dictates that low-
integrity (or third-party) integrations should simply be disallowed
from writing to these objects. However, API-based platforms are
designed such that integration/service of user‘s choice can control
the platform, e.g., IFTTT creating routines for Nest devices [23].
Thus, disallowing the user’s choice of third-party integration from
writing to AHOs breaks useful services that the user relies on (e.g.,
IFTTT, Kasa), which is a prohibitive cost in terms of user experience
that platforms may find undesirable. In fact, in 2019, Google had to
backtrack [9, 19] after ending its “Works with NEST” program in
favor of a more restricted “Works with Google Assistant” program
that would only be open to vetted partners. Following opposition
from both users and third-party integrations [11, 12, 25, 59], it even-
tually offered a more flexible program that allowed a broader set of
developers access to the internal home states (including AHOs) [19].

2. Focus on App analysis: Most of prior work has attempted to ad-
dress this issue as an ”application“ security problem, which assumes
a different threat model that is no longer applicable in current, API-
based platforms. That is, prior work [5, 6, 27, 42, 44, 58] analyzes or
instruments developer-defined automation programs (i.e.,IoT apps)
to limit privilege (or API access) based on whether apps require
it. However, this does not solve the core issue. First, IoT apps are
now black boxes. That is, platforms do not host apps anymore [52],
and connected third-party services trigger automations through the
platform API instead. Hence, prior solutions that rely on analysis or
instrumentation of source code (e.g., HAWatcher [17], IoTGuard [6]),
as well as those deployed outside of the platform (e.g., PFirewall [7],
Maverick [36]) both fail as third-party services are closed-source
and communicate with the platform directly (i.e., cloud-to-cloud).
Second, the lack of AHO integrity cannot be addressed by limiting
privilege. Even if we limit API access exclusively to services that
require it [47], an adversary may still compromise those services
and exploit the privilege (see the Motivating example in Section 2).

3. Lack of focus on AHOs: Similar to the focus on app analysis, the
policy enforcement in prior work [5–7, 42, 60, 62, 63] is designed
for a different threat model which does not address the core issue
of AHO manipulation. The policy enforcement chiefly focuses on
(1) preventing unsafe states reached via “app interactions” or “chain-
ing” of multiple IoT apps (e.g., IoTGuard [6]), or (2) preventing
unsafe states in individual, sensitive devices such as a door lock
(e.g., Expat [63]). However, none focus on the modifications to
AHOs, allowing an attacker to control routines, and bypass policy
enforcement altogether. For instance, consider this policy from Ex-
pat [63]: frontDoorLock: Front door should be locked when the user
is away. Expat enforces this policy by checking the value of pres-
ence_state (analogous to the home AHO). Hence, any third-party
service that can modify presence_state (e.g., demonstrated attack
in prior work [29][30]) can trivially bypass this policy, and lead the
home to an unsafe state.

Therefore, there is a need for a solution that is (1) practical, i.e.,
does not break functionality by preventing third-parties from access-
ing AHOs, and (2) effective, enabling integrity validation of AHO
changes. This paper proposes the moderate route i.e., runtime vali-
dation of proposed changes to AHOs, to enable proactive integrity
checking that is compatible with platform design and user choices.

4 DESIGN GOALS
This paper introduces the novel paradigm of home abstraction en-
dorsement that provides the following integrity guarantee for AHOs:
In the event that an untrusted service uses the platform API to mod-
ify a critical AHO (e.g., home), the modification will be allowed
iff it is consistent with the local state of the home, composed of
the physical device states. Our approach builds upon the concept
of trusted “guards” in the Biba integrity model [2], wherein a high
integrity subject cannot receive input from a low integrity subject
unless it is endorsed by a trusted guard. Similarly, we envision en-
dorsement policies that apply trusted device states and hence serve
as the trusted guards, ensuring the validity of API requests to change
AHOs. The following goals guide HomeEndorser’s design:
G1 Expressive and Practical Endorsement Policies. The endorse-

ment policy structure must be designed in a way that allows it
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Figure 2: A conceptual overview of home abstraction endorsement.

to express common deployment factors in smart homes that may
affect the endorsement, such as device availability and locality.

G2 Complete Mediation. Given that third-party services (or apps)
are black boxes [18, 54], the reference monitor should be app-
agnostic, i.e., should not depend on the analysis/instrumentation
of apps/services, but should provide complete mediation for all
API calls that modify AHOs, irrespective of their origin.

G3 Tamperproofness. Although our endorsement approach relies
on device states, several device states may be modifiable by
untrusted services via API. Thus, our reference monitor must
only rely on trustworthy states modifiable only by devices.

G4 Freshness. Endorsing an AHO change may require the reference
monitor to examine recent changes in the states of physical
devices, rather than simply reading the current state (e.g., as
sensor states may reset after apprising the platform of an event).

G5 Minimal Performance/Management Overhead. The framework
should minimize any delay perceivable by the user, as well as
deployment and management effort.

Finally, in line with prior work on smart home API misuse [27, 34,
44, 60], HomeEndorser does not seek to address multi-user access
control scenarios, which are a novel but orthogonal design challenge.

5 THE HOMEENDORSER FRAMEWORK
We propose HomeEndorser, a framework that enables home abstrac-
tion endorsement as shown in Figure 2. When a third party service
attempts to modify an AHO using the platform-API, HomeEndorser
enforces an integrity check in addition to the platform’s permission
check for endorsing the proposed change. To endorse the proposed
AHO-change, HomeEndorser checks the corresponding endorse-
ment policy that uses recent changes in device-attributes/states (e.g.,
motion detected, door lock unlocked). For example, to endorse a
proposed change from “away” to “home” in the home AHO, one
possible policy would be: if door-lock has been unlocked recently
(i.e., using the correct keycode), then ALLOW the change, else DENY.

Key observation: HomeEndorser’s endorsement policy design ac-
counts for device locality or placement in the home, due to a key ob-
servation: while AHOs such as home, fire, or security_state
are global values that apply to the entire home, a valid change in
them can be sufficiently reflected in one or more localized events.
For example, a proposed change from “away” to “home” in the
home AHO would be valid if the door lock at the front door was
unlocked successfully, or if the one in the back was unlocked suc-
cessfully. Similarly, a state change to fire is valid if any of the
smoke detectors, in any one location in the home, detects smoke.

Location-specific policy model: This observation motivates our
location-specific policy model (see Sec. 5.1), in which policy tem-
plates are composed of mutually exclusive, location-specific predi-
cates, with each predicate representing device states at a particular
location in the house, only one of which has to be satisfied for en-
dorsement. The benefit of such a model is that the user does not
need to have the devices available at all possible locations, but any
one location, making it more practical (G1). However, a tradeoff is
that our model does not currently support AHOs that do not exhibit
this property (i.e., require devices state from several locations to-
gether for endorsement), although we have not encountered such an
example in the 5 other AHOs studied (see Sec. 7.2).

Flexible policy templates and automatic instantiation: HomeEn-
dorser’s flexible policy model allows general expert-defined policy
templates (see Sec. 5.3) that it automatically instantiates in the con-
text of a user’s home (G5), using information regarding device avail-
ability and placement that is readily available in most smart home
platforms (see Sec. 5.2). More specifically, HomeEndorser instanti-
ates the most restrictive but feasible policy for each AHO-change to
be endorsed, i.e., location-specific predicates containing the largest
aggregate of device-attributes that can be satisfied with devices avail-
able at each corresponding location. We define a policy-template
generation methodology that allows experts to use open coding to
define endorsement policy templates in a systematic, ground-up
manner (see Sec. 5.3), using automatically-generated endorsement
attributes, i.e., trusted device-attributes that are either read-only or
highly restricted by platforms, ensuring tamperproofness (G3).

Reference Monitor: HomeEndorser’s reference monitor is inte-
grated into the user’s smart home platform in the form of an endorse-
ment check in the platform’s subsystem responsible for executing
all API calls, ensuring complete mediation (G2, Sec. 5.2). Note
that HomeEndorser’s reference monitor considers the most recent
change in device-attributes (G4), rather than the current state of the
device-attribute, as the two may be different, since most sensors
reset after a change, and because the most recent changes provide
the context for endorsing the proposed AHO change. This decision is
instrumental in eliminating unnecessary false denials (see Sec. 7.3).

5.1 Policy Model
A key challenge for HomeEndorser is designing a policy model that
can alleviate two practical constraints. First, endorsement policies
may consist of more than one device-attribute that must be checked
together. Second, as described previously, AHO-changes can be
endorsed via mutually-exclusive, localized state changes; e.g., the
front door lock or the back door lock can either endorse a change
to home. We account for these constraints with a policy template
expressed as a Disjunctive Normal Form (DNF) boolean formula:

Definition 1 (Endorsement Policy). The policy for endorsing a
change in AHO 𝑥 to value 𝑦, 𝑃𝑥 (𝑦), is a DNF formula composed of
one or more location-specific predicates (𝐿𝑖 ), i.e., 𝑃𝑥 (𝑦) = 𝐿1 ∨ 𝐿2
∨ ... ∨ 𝐿𝑛 , where a location-specific predicate is defined as follows:

Definition 2 (Location-specific Predicate). A location-specific policy
predicate 𝐿𝑖 for location 𝑖 (e.g., entryway), i.e., 𝐿𝑖 = 𝑑 𝑗 ∧ 𝑑𝑘 ∧ ...𝑑𝑚 ,
is a conjunction of one or more device-attribute checks 𝑑 𝑗 , defined
as follows:

4
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Definition 3 (Device-attribute Check). A device-attribute check 𝑑 𝑗
is a condition 𝑑 𝑗 == 𝑠, where 𝑠 is a physical state that the particular
device-attribute must have exhibited in the recent past, for the device-
attribute check to return true.

To illustrate, let us express the policy from the motivating example
for endorsing the home AHO’s change to “home”. We express the
policy using a door lock and a motion sensor at the entry way, as
well as the same devices at the rear entrance:

𝑃home(home) = (door-lock_lock == UNLOCKED ∧
motion_sensor == ACTIVE)𝑓 𝑟𝑜𝑛𝑡−𝑑𝑜𝑜𝑟

∨
(door-lock_lock == UNLOCKED ∧

motion_sensor == ACTIVE)𝑏𝑎𝑐𝑘−𝑑𝑜𝑜𝑟
The above policy considers both the door lock being unlocked, and
motion being sensed, to prevent false negatives. That is, for both
the conditions above to be true, a user would have to unlock the
door and then enter, i.e., confirming that they are home. On the
contrary, if the user unlocks but leaves without entering, this policy
condition would correctly result in a denial (as shown in Sec. 7.3).
Similarly, the disjunction among location-specific predicates enables
their independent evaluation, thereby allowing the AHO-change as
long as any one evaluates to a true result. Finally, we define two
policy actions: ALLOW and DENY, corresponding to the true or false
values that the DNF formula results in, respectively.

5.2 Secure and Practical Enforcement
In a manner similar to prior solutions in the broader modern OS
security space [20, 38, 39], we design HomeEndorser’s enforcement
as an enhancement to the OS (i.e., the platform) itself. This decision
is influenced by how third-party services are currently integrated
in smart home platforms (e.g., NEST and SmartThings v3), i.e., as
cloud endpoints that use RESTful APIs to interact with the platform,
but execute on their own proprietary servers, without a way for
the platform to inspect them. Therefore, our decision ensures that
HomeEndorser will mediate all API commands from third-parties
before they are executed (G2), in a manner agnostic to how third
party integrations are implemented/deployed (e.g., as black box
network endpoints). We describe HomeEndorser’s enforcement in
terms of its three design components, as shown in Figure 3.

1. Deployment-aware Policy Instantiation: When HomeEndorser
is first set up in a home, it leverages the platform’s internal book-
keeping systems to extract all devices and device-locations. Then,
for each AHO the user decides to endorse, it uses the policy tem-
plates (generated by experts using the policy model, as described
later in Sec. 5.3) to instantiate the most restrictive but feasible policy,
i.e., a policy consisting of the largest applicable location-specific
predicate(s), given the available devices and their locations. Such

dynamic and adaptive instantiation is necessary to apply the policy
templates to any home, given that a typical user’s setup may only
have a small subset of all the devices that can endorse a particular
change, and only at a few (or single) locations. For instance, for
a user who has a door lock and a motion sensor only at their front
door, the policy template in Section 5.1 is instantiated as only one
location predicate representing the said devices at the front door:

𝑃home(home) = (door-lock_lock == UNLOCKED ∧
motion_sensor == ACTIVE)𝑓 𝑟𝑜𝑛𝑡−𝑑𝑜𝑜𝑟

Thus, HomeEndorser enforces the most restrictive, feasible policy
for devices at each individual location in the home, and also reinstan-
tiates the policy upon a configuration change, i.e., addition, removal,
or relocation of a new device (see Sec. 6 for implementation).

2. The Endorsement Check: HomeEndorser mediates all API re-
quests, but only invokes the endorsement check if an AHO selected
by the user for endorsement is about to be modified, in a manner sim-
ilar to performance-preserving hook activations previously proposed
for Android [20] (G5). HomeEndorser retrieves the instantiated pol-
icy for the AHO-change being endorsed and collects the most recent
state changes of all the device-attributes in it. If the state of all the
device-attributes in any predicate matches with the current policy,
the decision is ALLOW, else DENY (and the user is notified).

Additionally, HomeEndorser considers the most granular value
of a device-attribute for the enforcement check. For instance, con-
sider that when Alice leaves, she sets home AHO to “away”. To
circumvent HomeEndorser, Bob could attempt to modify home (i.e.,
back from “away” to “home”) at the time of Alice’s departure. This
is possible because Alice leaving or coming home both involve (1)
unlocking the door, and (2) triggering the door-way motion sensor.
A naive endorsement approach would allow the AHO change by
considering these state changes, even when triggered in the opposite
order, because it matches 𝑃ℎ𝑜𝑚𝑒 (home). However, smart home devices
provide unique device attribute values even for similar actions, i.e.,
the state value for unlocking the door using the keypad is different
relative to simply unlocking it from the inside (e.g., “owner” in the
former case, and “manual” in the latter). HomeEndorser considers
this available granularity, preventing such an attack.

3. Retrieving most recent changes using Platform State Machine:
A naive approach of executing an endorsement check would be to
query each device’s current state at the time of check. However,
such a check would most certainly fail and lead to false denials
because most sensors detect and report a change, and then reset
to a predefined neutral state. For example, recall the endorsement
policy predicate to endorse home consisting of the door lock and
the motion detector (assuming single location for simplicity):

door-lock_lock == UNLOCKED ∧ motion_sensor == ACTIVE
Unless the check happens exactly at the moment the user enters, the
motion sensor will reset to INACTIVE immediately after detecting
motion, causing a false denial. Thus, for correct endorsement, we
check the most recent but fresh change in the device states (G4), i.e.,
the last state change before the state automatically reset, within a
configurable time threshold to ensure freshness (e.g., one minute).
Since HomeEndorser obtains all recent device state changes and
their timestamps from the platform state machine (see Sec. 6, it can
discard states that are older than the preconfigured threshold, thereby
preventing historical old states from causing false allows.
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5.3 Data-driven Policy Template Generation
HomeEndorser defines a data-driven methodology to enable experts
(e.g., security researchers, platform vendors) to enumerate general
endorsement policy templates that HomeEndorser automatically in-
stantiates in the context of end-user homes (as previously described
in Sec. 5.2). Our approach automatically creates a device-attribute
map, i.e., a comprehensive mapping between device types (e.g., cam-
eras, door locks) and the attributes they possess, and defines trusted
endorsement attributes to be used for tamperproof endorsement. We
then use open coding for identifying the observations and infer-
ences that can be made from the endorsement attributes to generate
templates using our policy model (see Sec. 5.1).

1. Generating the Device-Attribute Map: We automatically con-
struct a comprehensive device-attribute map from several informa-
tion sources selected based on platform popularity, and the potential
of obtaining realistic mappings: (1) a device-resource specification
from the Open Connectivity Foundation (OCF) [43], used by the plat-
form IoTivity [26], (2) the NEST data store [41], (3) the SmartThings
capability map [53], and (4) SmartThings device handlers [46]. As
each of these sources exhibits a unique representation of devices and
attributes, we develop customized, automated methods for extracting
device-attributes from each source (details in online appendix [21]).

2. Endorsement Attributes for Tamperproofness: For tamperproof
endorsement, HomeEndorser must be able to trust the information
received from the participating endorsers i.e., device-attribute pairs
(G3). We achieve this goal by defining a trusted subset of device-
attributes to be used for our checks, i.e., endorsement attributes.
We propose two categories of endorsement attributes: (1) read-only
attributes, i.e., which are only writable by devices, and not via API
calls, rendering them read-only from the third-party API caller’s per-
spective (e.g., motion sensor reading), and (2) designated attributes,
which are writeable in theory, but are considered high-integrity by
platforms and prior security research [10, 56] alike (e.g., locking the
door lock), and hence, heavily restricted. For example, NEST only
allows its platform app to unlock locks, but not third-party services.
Both read-only and designated device attributes would have a higher
integrity level than an AHO such as home as they are not modifiable
by a third-party service, and hence, would be trusted to endorse it.

3. Generating Policy Templates from Inferences: We now address
the question of how the endorsement attributes are used to endorse
a specific AHO, by designing a holistic inference-based template
generation process that is a one-time, expert-driven effort. We be-
gin by identifying 5 additional AHOs from prior work [13, 29] and
AHOs which we encountered when building our device-attribute
map (e.g., the security_state from NEST). Then, we consider
each device-attribute, and identify the type of information sensed or
observed by that device-attribute, which we then translate to an infer-
ence that could be used for endorsing an integrity-sensitive change
in one or more of the AHOs. For example, the device-attribute pair
<security-panel, disarmed> indicates that the security panel/keypad
was recently disarmed, which may provide an inference to endorse
the home AHO’s proposed change to “home”. We combine infer-
ences identified for each AHO to construct policy templates using
the structure defined in Section 5.1. That is, each inference becomes
a part of the AHO’s endorsement policy, which is then instantiated in

a user’s home. Section 7.4 provides example policies under different
scenarios (complete scenarios table in the online appendix [21]).

HomeEndorser’s policy instantiation approach is also resistant
to conflicts, as it instantiates only a single policy for a specific
deployment context using a quantitative criteria. The instantiation
criteria for the most restrictive but feasible policy is governed by
the number of device-attributes used in predicates (larger number
indicating more restrictions) that are feasible given the devices at
specific locations, and not the actual values/states of the device-
attributes in the predicates. Since only a single policy is instantiated
in this way, the issue of policy conflict does not arise.

Finally, HomeEndorser’s expert-driven template generation ap-
proach has several advantages over automatically-generated corre-
lations in systems that learn from IoT app source code, event logs,
and user activities [17]. First, as we do not trust apps, our policy
templates are not susceptible to the problem of false learning, unlike
correlations influenced by untrusted app code. Second, learning from
app code is becoming infeasible (see Sec 2). Third, our approach is
not privacy invasive as it does not involve large-scale collection of
real user data/behavior. Fourth, HomeEndorser’s endorsement out-
comes are independent of the number of users in a home, in contrast
with systems that learn correlations specific to users available during
training, which may change at enforcement.

6 IMPLEMENTATION
This section describes our policy template generation study, as well
as the reference monitor implemented in HomeAssistant. We plan
to release all the code and data upon publication.

1. Policy Template Generation Study: We automatically generated
a combined device-attribute map from all the data sources consisting
of 100 device-types and 510 device-attribute pairs, of which were 41
endorsement attributes, i.e., read-only or designated device-attributes.
Two authors independently identified the inferences that could be
drawn from these endorsement attributes to endorse changes to one
or more of our 6 AHOs. The coders disagreed on 12/510 device-
attribute pairs (2.4% disagreement rate), which were resolved via
discussion (see details on disagreements in online appendix [21]).
The inferences led to 10 endorsement attributes for home alone,
which can feasibly instantiate several policies (see Sec. 7.1).

2. Implementation on HomeAssistant: We implemented Home-
Endorser in HomeAssistant, a popular open-source platform. We
set the default time threshold as 1 minute, which we found to be
sufficient in our trials for a user to enter home, platform state ma-
chine to be updated, and user’s service to set home AHO (details in
online appendix [21]). HomeEndorser uses HomeAssistant’s state
machine to track most recent state changes and their timestamps,
and also to intercept the incoming state change requests to medi-
ate all API accesses. Furthermore, HomeEndorser uses callbacks in
HomeAssistant’s Event Bus to track the addition/removal of devices
for re-instantiating policies as the home evolves. Finally, HomeEn-
dorser keeps track of device-connectivity using the state machine,
and falls back to the next most restrictive policy in case a device
becomes unavailable at runtime. We provide log screenshots from
the deployed HomeEndorser in our online appendix [21].

3. Policy Instantiation Using Platform Metadata: HomeEndorser
extracts device-metadata from HomeAssistant, including device

6



Hue
Motion/Illumin-

ance/Temperature
Sensor

Blink
Camera

H
al

lw
ay

Closet

Hue Lamp

Wemo
Switch

Google Home

Virtual Devices:
Security Panel

Presence Sensor
Beacon Sensor

Thermostat

August 
DoorLock

Aeotec
Door

Sensor

Front door

Figure 4: Layout of the physical device placement
Table 1: Sample policies for endorsing home (“away”→“home”)

Policy
𝑃1 <security-panel, disarmed> ∧ <motion-sensor, active>
𝑃2 <Doorlock, unlocked> ∧ <presence-sensor, active> ∧ <beacon, active>
𝑃3 <Garage-doorlock,unlocked> ∧ <beacon,active>

types (e.g., door lock), and locations within the home (e.g., front
door). To instantiate the most restrictive but feasible policy for an
AHO, for each location-specific predicate in the policy, HomeEn-
dorser attempts to find the constituent devices in the same location,
and selects the largest predicate that matches entirely for each loca-
tion, i.e., where all required devices are present.

7 EVALUATION
We evaluate HomeEndorser along 7 research questions:
• RQ1: (Feasibility of policy model) Is it feasible to generate en-
dorsement policies using a small subset of endorsement attributes?
• RQ2: (Generalizability of policy model) Do policies exist for
endorsing AHOs other than home?
• RQ3: (False Denials) What is the rate of false denials in typical
benign usage, i.e., when users intentionally cause AHO changes, and
over a period of home automation usage?
• RQ4: (Security) Does HomeEndorser prevent an attacker from
escalating privilege to a high-integrity device using AHOs?
• RQ5: (Runtime Performance) What is the performance overhead
introduced by HomeEndorser?
• RQ6: (Cost) How much effort is required to integrate and deploy
HomeEndorser?

Experimental Setup: We installed HomeEndorser (HomeAssistant
v0.112.0) on a Macbook Pro with 16GB RAM, connected 7 real and
4 virtual devices (full list in appendix A.1) in a room as shown in
Figure 4, guided by deployment from prior work [28].

7.1 Feasibility of the Policy Model (RQ1)
We identified 10 endorsement attributes for endorsing the home
AHO-change from away to home using the approach in Section 5.3.
However, HomeEndorser’s policy instantiation automatically adapts
to cases where any subset of the 10 attributes are present and en-
forces the most restrictive policy for that subset, allowing flexible
device combinations in the user’s home. For instance, a total of 1023
combination of devices at a single location are possible to enable
HomeEndorser to endorse home AHO (full list in online appen-
dix [21]). In fact, having one device-attribute at any location (e.g.,
front door, garage) is enough to enable endorsement, as HomeEn-
dorser instantiates devices in different location as mutually-exclusive,
thus increasing the number of combinations.

For instance, as Table 1 shows, a user with a door lock and motion
sensor, or another with a security panel, or another with a garage

doorlock and a presence sensor, would all be able to endorse home.
For stronger validation, the user may consider combination of device-
attributes, up to all 10 device-attributes. This demonstrates that our
approach is feasible, i.e., we can define a large number of diverse
policies for an AHO (i.e., home), using a limited set of endorsement
attributes, and hence, increase the possibility of finding a policy that
contains the limited set of devices a particular user possess (RQ1).

7.2 Generalizability of the Policy Model (RQ2)
To demonstrate the generalizability of our policy model, we consider
5 additional AHOs (security_state, fire, water leak,
illuminance, safety_state). For each AHO, we identified
endorsement attributes from the device-attribute map and generated
inferences using the process from Section 5.3. Our process resulted
in 41 inferences (cumulatively) useful for endorsement, with each
AHO being endorsed using at least 3 device-attributes (examples
in appendix Table 5). This demonstrates the generalizability of our
approach, i.e., similar policies are feasible for 5 other AHOs (RQ2).

7.3 Operation under Realistic Home Automation
Usage (RQ3)

To test whether HomeEndorser reliably enforces endorsement poli-
cies in expected cases, we perform 2 analysis: 1) Evaluating Home-
Endorser’s operation automatically under realistic event sequences
generated by Helion [35], and 2) Executing realistic user behavior
scenarios derived from prior work [28] with HomeEndorser enabled.
1. Evaluation with Event Sequences: To test that HomeEndorser
performs endorsement according to its policies in regular usage, we
used Helion [35] to generate event sequences that are likely to occur
next in the home given an initial home event. We provided Helion
with 400 randomly chosen starting events and generated 8191 events,
consisting of 64 unique devices. We created 51 virtual devices in
addition to the 13 in our setup, and automatically tested HomeEn-
dorser’s endorsement accuracy by running the event sequences with
HomeEndorser enabled, comparing HomeEndorser’s decision with
the expected behavior based on the device states, and restarting the
system in between the execution of successive event sequences.

During the experiment, the effective policy consisted of 6 devices
at location ‘front door’: 4 sensors (motion, presence, beacon, door),
and 2 devices (door lock, security panel). To assess accuracy, we
assume that the user is away and save snapshots of device states at
the time of check to automatically compare with the effective policy.
Result: HomeEndorser was invoked in 605 home AHO state change
requests, correctly allowing in 562 cases and denying in 43. Without
HomeEndorser’s interception, all 43 cases would have incorrectly
allowed the AHO change from away to home, leading the home to
an unsafe state. One question is how many sensors were needed to
deny the 43 unsafe AHO change requests correctly. We found that
in each denial there were no cases where two or more sensors were
triggered at the time of AHO change request, while in 9/43 cases,
at least one sensor (either motion or presence) was triggered. The
door lock stayed ‘locked’ in all cases. Hence, either having the door
lock or at least 2 sensors in the user’s setup can be a viable strategy
to enable correct endorsement using HomeEndorser.

2. Evaluating Accuracy with Intentional AHO Changes: To fur-
ther evaluate HomeEndorser’s performance in specific benign cases
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of intentional AHO changes made by the user (e.g., automatically
setting home using a third-party service after the user gets home),
we derive a set of 10 realistic user behavior scenarios from prior
work [28], and enact those scenarios in our apartment testbed. Due
to space constraints, we summarize 3/10 exemplary scenarios to dis-
cuss HomeEndorser’s decisions in response to benign user behavior,
with the rest in the online appendix [21]).

Scenario 1 – Unlocking the house, and then leaving: Alice returns
home and opens the front door after unlocking the door lock. How-
ever, she gets a call from her office and leaves immediately without
entering, accidentally also leaving the door open in the process. Re-
gardless, Alice’s home/away service accidentally requests the home
AHO to change to “home” (i.e., even when Alice has actually left).
In response to the request, HomeEndorser gathers the recent states
of the devices to check against the policy 𝑃home2 (home).

𝑃home2 (home) = (door-lock_lock == UNLOCKED ∧
motion_sensor == ACTIVE ∧ door_sensor == ACTIVE)𝑓 𝑟𝑜𝑛𝑡−𝑑𝑜𝑜𝑟

The policy constraints are partially satisfied, as the door lock was
unlocked and the door sensor was opened recently. However, as
Alice did not enter, the motion sensor did not detect any motion, and
the policy results in a correct denial, preventing an unsafe situation
in which the camera is turned off while the home is vulnerable (i.e.,
the door is unlocked). Thus, HomeEndorser’s composite policy de-
sign comprising of multiple devices provides stronger endorsement,
preventing accidental but unsafe changes.

Scenario 2 – Disarming the security panel and entering: Alice
returns home and disarms the home by entering the key-code in the
security panel near the door. She then enters the home triggering the
motion sensor. At the same time, a home security service requests
change to the security_state AHO on Alice’s behalf, from
“deter” to “ok”, which if allowed, would disable the security camera,
as well as any other security devices (e.g., alarms).

HomeEndorser gathers the recent states of the devices to check
against the policy 𝑃security_state1 (ok) (provided previously in Sec-
tion 7.4). Since the security panel was manually disarmed and the
motion sensor was recently active, the policy is satisfied and the
state change is correctly allowed.

Scenario 3 – Direct state change request: Alice manually changes
the home AHO to “home” using the HomeAssistant UI. HomeEn-
dorser identifies that the request was not made through the REST
API, and allows it without checking the policy.

To summarize, our evaluation demonstrates that HomeEndorser
correctly endorses AHO-changes, and does not cause false denials
under benign behavior. In scenario 1, its denials prevents an acci-
dental and harmful state change by users (RQ3). In some cases, at
the time of endorsement check (i.e., time of API call), some devices
had reverted to their default states (e.g., motion sensor to “inactive”
state). Thus, HomeEndorser’s approach of checking the most recent
state changes rather than only the states at the time of endorsement
prevents such potential false denials.

7.4 Preventing Privilege Escalation (RQ4)
An attacker (e.g., Bob)’s goal during privilege escalation is to modify
a high-integrity device (e.g., a security camera) that they cannot
directly access or compromise by maliciously introducing changes
to any AHO that the device depends on. As Bob already has access

to modify the AHOs (e.g., via a service he controls, see motivating
example in Sec. 2), the access control model without HomeEndorser
is unable to prevent Bob from changing the AHO value arbitrarily.
However, with HomeEndorser enabled, Bob needs endorsement
from the devices associated with the endorsement attributes (see
Sec. 5.2), which he is unable to gain, and the attack is prevented.

To demonstrate, we assume the threat described in the motiva-
tion (see Sec. 2), where the camera depends on both the home and
security_state AHOs, and experimentally validate HomeEn-
dorser’s effectiveness with two attack scenarios.

Malicious Scenario 1 – Bob modifies home: We deploy a malicious
third-party service controlled by the attacker, Bob. We assume that
Alice has granted to the service the permission (i.e., a REST API
token) to write to the home AHO. When Alice is out of the home,
Bob writes to the value “home” to home, to disable the camera.
Without HomeEndorser, the home AHO will change, allowing Bob
to remotely disable the security camera; however, we consider that
Alice uses HomeEndorser with the policy 𝑃home1 (home):

𝑃home1 (home) = (door-lock_lock == UNLOCKED ∧
motion_sensor == ACTIVE)𝑓 𝑟𝑜𝑛𝑡−𝑑𝑜𝑜𝑟

Thus, when Bob writes to home, the policy 𝑃home1 (home) is checked
as follows: HomeEndorser queries the state machine, and obtains
the most recent change to the door lock and the motion detector at
the front door. Since the door lock was not unlocked, and the motion
detector has not been active recently, the policy returns a DENY
decision, preventing the attack. It is also important to note that Bob
could attempt to circumvent HomeEndorser’s policy by satisfying
one of the two conditions in it, e.g., by sliding a thin object (e.g., a
card) through the door to trigger the motion sensor; however, the
conjunction among device-attributes prevents this variant.

Malicious Scenario 2 – Bob modifies security_state: We
deploy a malicious third-party service controlled by Bob, to which
Alice has granted the permission to write to the security_state
AHO. Bob will attempt to set the security_state to “ok” (as
opposed to “deter”), which will trigger a routine that turns off the
camera. Just like the prior scenario, without HomeEndorser Bob
will succeed; however, Alice uses HomeEndorser with the policy
𝑃security_state1 (ok):

𝑃security_state1 (ok) = (security-panel == DISARMED ∧
motion_sensor == ACTIVE)𝑓 𝑟𝑜𝑛𝑡−𝑑𝑜𝑜𝑟

When Bob writes to security_state, 𝑃security_state1 (ok) is
checked. Since the security panel was not disarmed and the motion
sensor was not active recently, the policy returns a DENY decision.

Thus, HomeEndorser successfully prevents the AHO modifica-
tion, which would have been allowed by default access control.

7.5 Runtime Performance (RQ5)
We compute microbenchmarks to capture each aspect of the plat-
form that HomeEndorser affects, in particular, the time taken for
(1) policy instantiation (i.e., delay at boot time), (2) policy update
during runtime (3) the endorsement hook invocation overhead of an
API call to a state not being endorsed), and, (4) the endorsement
check overhead of an API call to a state being endorsed. Further, we
perform 2 macrobenchmarks to assess HomeEndorser’s impact on
the execution times of remote IoT services that execute an automa-
tion using the REST API (5) involving an AHO being endorsed,
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Table 2: Performance overhead of HomeEndorser (in comparison with the unmodified HomeAssistant baseline)
No. Operation HomeAssistant Baseline (ms) HomeEndorser (ms) Overhead(ms) Overhead(%)
1. Policy Instantiation (Boot up time) 23.851 ± 1.738 33.669 ± 5.042 9.818 41.16
2. Policy update during runtime - 4.350 ± 0.515 - -
3. Changing non-endorsed AHO (Hook invocation cost) 9.854 ± 0.723 9.916 ± 0.814 0.062 0.63
4. Changing endorsed AHO (Endorsement check cost) 9.451 ± 0.605 10.367 ± 0.482 0.916 9.69
5. Automation execution with endorsed AHO 16.582 ± 2.388 18.598 ± 0.669 2.016 12.16
6. Automation execution with non-endorsed AHO 14.609 ± 1.026 14.311 ± 0.477 -0.298 -2.04

and (6) involving an AHO not being endorsed. We perform each
experiment 50 times, using the largest (worst-case) policy (𝑃109,
online appendix [21]), and use vanilla HomeAssistant as a baseline.

Results: Table 2 shows the mean results with 95% confidence inter-
vals. As seen in the table, HomeEndorser has negligible performance
overhead for operations that do not involve the AHO being endorsed
(i.e., #3 and #6). For endorsed AHOs, HomeEndorser adds only
0.916ms (9.69% overhead) to an AHO-change invoked via an API
call (microbenchmark), and adds 2.016ms (12.16% overhead) to
the overall execution time of an automation execution that changes
an endorsed AHO (macrobenchmark). In fact, the maximum over-
head of 9.818ms (41.16%) that HomeEndorser adds is to the overall
bootup time of HomeAssistant, which is not that frequent, and not
perceivable by the user. After the bootup, the overhead to update
policies when devices get added or removed is only 4.350 ms. Fi-
nally, we note that the endorsement check overhead is not dependent
on the policy size, as HomeAssistant’s (and hence HomeEndorser’s)
state machine obtains device state changes in parallel.

7.6 Effort to Integrate and Configure (RQ6)
We now describe the effort to deploy and integrate HomeEndorser,
from the perspective of experts, platform designers, and end-users.

1. Effort by experts: HomeEndorser’s process for generating policy
templates is a one-time effort, and templates only need to be updated
when new functionality emerges for a device category, or when an
entirely new category of device is introduced to the market (i.e.,
not new brands). The only manual effort involves the identification
of the endorsement attributes (as described in Sec. 5.3). It took 2
authors 4 workdays to identify the 10 endorsement attributes for the
home AHO (as described in Sec. 6).

2. Deployment in the User’s Home: As HomeEndorser is integrated
with the platform (here, HomeAssistant) and is pre-configured to
include all endorsement policy templates, it requires minimal effort
from the user. We describe the ease of use in an end-to-end manner
as follows: (1) The user connects and configures their devices to the
platform as usual (e.g., setting names, location). (2) The user selects
an AHO-change they want to endorse. This is the only additional
configuration step introduced by HomeEndorser. (3) HomeEndorser
automatically instantiates location specific policies (see Sec. 5.2)
for each AHO without incurring any additional user input. This also
occurs automatically on boot, or as devices are added/removed. (4)
When HomeEndorser’s decision results in an AHO-change denial,
the user is notified. The user can override this by changing the AHO-
state through the native app, which HomeEndorser allows by default.
However, we expect this to be rare given HomeEndorser’s negligible
false positives (see Sec. 7.3).

3. Platform integration: The design of HomeEndorser is indepen-
dent of any single platform. That is, while our proof of concept is
implemented as an enhancement of HomeAssistant, we identify 4

Table 3: The (minimal) cost of Integrating HomeEndorser with respect
to the properties identified in Section 7.6

H.Assistant IoTivity OpenHAB SmartThings NEST GoogleHome
𝑃𝑟𝑜𝑝1 ✓ ✓ ✓ ✓* ✓* ✓*
𝑃𝑟𝑜𝑝2 ✓ ✓ ✓ ✓ ✓* ✓*
𝑃𝑟𝑜𝑝3 ✓ ✗ ✓ ✓ ✓* ✓*
𝑃𝑟𝑜𝑝4 ✓ ✓ ✓ ✓* ✓* ✓*

✓ = Directly portable, ✓* = Directly portable, but needs confirmation from source
code, ✗= design-level constraint/extension

key platform properties that would enable HomeEndorser on any
smart home platform. We chose to implement HomeEndorser in
HomeAssistant because of its open-source nature and the ease of
evaluation it allowed (e.g., creating a virtual device).

Property 1 (𝑃𝑟𝑜𝑝1) - Ability to obtain device states: HomeEndorser
must be able to obtain states from all devices. Ideally, the platform
should have a Platform State Machine that can readily provide recent
device state changes (G4).

Property 2 (𝑃𝑟𝑜𝑝2) - Complete mediation and Tamperproofness: The
platform must have a central component that intercepts all the API
requests (G2), which must be unmodifiable by third parties (G3).

Property 3 (𝑃𝑟𝑜𝑝3) - Timestamp information of device states: Home-
Endorser requires recent device state information to prevent any false
positives that can occur because of devices reporting cached states
or the platform itself reporting the old/last known state because of
an unresponsive device (G4).

Property 4 (𝑃𝑟𝑜𝑝4) - Ability to monitor device-changes: HomeEndorser
needs to dynamically adapt its policies based on the current setup
of the smart home, and hence, the platform needs to monitor the
addition, removal, and change in placement of devices.

Table 3 illustrates how 6 popular smart home platforms exhibit
𝑃𝑟𝑜𝑝1 → 𝑃𝑟𝑜𝑝4, and particularly, demonstrates that only IoTiv-
ity requires a design-level extension (i.e., a state machine to track
freshness) for integrating HomeEndorser (in terms of 𝑃𝑟𝑜𝑝3), and
all other platforms may feasibly integrate HomeEndorser with negli-
gible engineering efforts. For instance, both SmartThings and Open-
HAB satisfy the 4 design properties necessary to integrate HomeEn-
dorser with minor modifications. Both maintain a variant of the state
machine, which enables us to collect all device states at any time, and
validate their timestamps (i.e., enabling 𝑃𝑟𝑜𝑝1, 𝑃𝑟𝑜𝑝3 and 𝑃𝑟𝑜𝑝4).
Similarly, both enable centralized mediation of AHOs (𝑃𝑟𝑜𝑝2), with
SmartThings enabling it immediately, whereas with OpenHab we
would simply need to hook into the exposed services/bindings, as
prior work has done for Android [20] and Linux [61]. Finally, we
mark certain properties for NEST, SmartThings and Google Home
as ✓* as those properties are exhibited as per the documentation,
but source code would be needed to confirm.

7.7 Threats to Validity
We now discuss the threats to the validity of the proposed work.
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1. Byzantine Fault Tolerance: We rely on devices to not be compro-
mised and to report correct states, as stated in the threat model in Sec-
tion 4. HomeEndorser’s integrity validation of AHOs complements
prior efforts [3] that aim to validate device states via fingerprinting.

2. Device Availability and Placement: As HomeEndorser automati-
cally chooses the most restrictive policy applicable to a user’s home
based on device availability/placement (see Sec. 5.2), it can adapt to
diverse device combinations. However, we assume optimal device
placement/configuration to be out of scope, and direct the reader to
complementary work that informs on optimal deployment [28].

3. Completeness and Rigor of Policy Generation: The device-
attribute map (see Sec. 5.3), consisting of 510 pairs, is an evolving
dataset that is as complete as the information sources used to derive
it (e.g., capability maps), and which can accommodate new device
types/attributes with minimal effort. Furthermore, we used system-
atic open-coding to identify endorsement attributes with negligible
disagreements (details in online appendix [21]), demonstrating high
confidence and minimal risk of incompleteness due to expert error.

8 RELATED WORK
We now disuss the key areas of prior work that are related to Home-
Endorser, particularly in the context of smart home security, and the
problem of AHO integrity.

1. Policy model design: Prior work [7, 49, 62, 63] has explored
policy models with various properties. For instance, ExPAT [63]
captures user expectations as invariants, PatrIoT [62] supports tem-
poral clauses, while Kratos [49] supports multiuser policies. We
design HomeEndorser’s own policy model for the following reason:
unlike prior work, HomeEndorser is designed exclusively for en-
dorsement of AHOs and does not need to accommodate properties
from automations into policy invariants (e.g., temporal). Instead, it
only considers device-attributes and their locations, with different
locations expressed in mutually-exclusive DNF predicates. As other
conditions (e.g., temporal) are decoupled from the policy and are
part of enforcement, the policy specification is simpler and allows
automated, deployment-aware policy instantiation.

2. Policy enforcement: While prior work [6, 7, 14, 36, 42, 62,
63] has explored policy enforcement, they do not focus on AHO
integrity as we discuss in Section 2. Recall that AHOs are platform
objects accessible via direct API calls to the platform. However,
prior work (e.g., PFirewall [7], Maverick [36]) that operate outside
the platform cannot intercept direct cloud-cloud communications
between the platforms and the devices, rendering them ineffective.
Unlike HomeEndorser, Maverick [36] also incurs significant user
effort by requiring users to configure the policies, and add devices
through the tool’s own interface.

Similarly, prior work has supplemented policy enforcement with
static analysis [5, 42], runtime rule-based enforcement [6, 62, 63]
or predicting app interactions via physical channels [14] to prevent
two or more apps from accidentally (or maliciously) triggering one
another to reach an unsafe state (i.e., app chaining). However, the
scenario in the motivation example manifests as an arbitrary/unau-
thorized API call to change AHO, not as app chains, so it cannot
be prevented by instrumenting apps. Additionally, as they analyze
installed IoT apps, they may be incompatible with popular platforms
(see Sec. 2), while HomeEndorser is app agnostic and compatible.

3. Centralized AHO Modifications: Schuster et al. [47] propose
securing shared states (including AHOs) by centralizing them and
allowing only trusted third-parties to modify them using “environ-
mental situation oracles (ESOs)”. However, the ESO model aims for
privacy, not integrity, in allowing one dedicated trusted app per AHO
to compute that AHO’s value, which may be hard to scale or main-
tain and also need to be accepted by competing stakeholders (e.g.,
users, developers). In contrast, HomeEndorser respects user-choice,
and provides endorsement in the presence of untrusted services.

4. Anomaly Detection: HomeEndorser builds upon Biba’s notion
of trusted guards [2] for endorsement, and is inherently orthogo-
nal to anomaly detection systems like HAWatcher [17]. However,
HomeEndorser has some key advantages over HAWatcher. First,
HomeEndorser is app agnostic and learns correlations from trusted
endorsement attributes. This makes it compatible with most plat-
forms (see Sec. 2), and prevents the risk of false learning from mali-
cious apps. Further, HAWatcher trains separately for every home, re-
quires private user data and a day of re-training when configurations
change while HomeEndorser automatically instantiates based on
device availability/placement information of the user (see Sec. 5.3).

5. Device State Validation: HomeEndorser is complementary to
work that validate device states such as Peeves [3]. Peeves generates
fingerprints of device events based on physical changes they cause
that are sensed by other trusted sensors to attest device states. How-
ever, unlike HomeEndorser, Peeves focuses on the fingerprint accura-
cy/precision for individual device states rather than on AHOs which
are platform objects, while HomeEndorser builds AHO endorsement
policies involving trusted device-attributes. As the device states that
Peeves validates form the building block of HomeEndorser’s en-
dorsement, HomeEndorser will benefit from such complementary
approaches, although neither promise byzantine fault tolerance.

9 CONCLUSION
We presented the HomeEndorser framework, which uses localized
device state changes to endorse proposed changes to abstract home
objects (AHOs) by compromised/malicious services with API access,
thereby protecting high integrity devices that rely on the AHO values.
HomeEndorser provides a policy model for specifying endorsement
policies in terms of device state changes, and a platform reference
monitor for endorsing all API requests to change AHOs. We evaluate
HomeEndorser on the HomeAssistant platform, finding that we can
feasibly derive policy rules for HomeEndorser to endorse changes to
6 AHOs, preventing malice and accidents with feasible performance
overhead. Finally, we demonstrate that HomeEndorser is backwards
compatible with most popular smart home platforms, and requires
modest human effort to configure and deploy.
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A APPENDIX
A.1 Device List for Evaluation
Table 4 shows the real as well as the virtual devices we integrated
into HomeAssistant to conduct the experiments. Our choice of de-
vices was limited by compatibility with HomeAssistant, with a bias
towards popular brands and device types that would allow us to
evaluate HomeEndorser’s endorsement.

Table 4: Real and Virtual Devices in Evaluation

Device real/virtual Number
August Door Lock 𝑟𝑒𝑎𝑙 1

Blink Camera 𝑟𝑒𝑎𝑙 1
Philips Hue Motion+Illuminance+Temp. Sensor 𝑟𝑒𝑎𝑙 1

Aotec Door Sensor 𝑟𝑒𝑎𝑙 1
Security Panel 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 1

Presence Sensor 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 1
Beacon Sensor 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 1

Thermostat 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 1
Wemo Switch 𝑟𝑒𝑎𝑙 1

Philips Hue Lamp 𝑟𝑒𝑎𝑙 1
Google Home 𝑟𝑒𝑎𝑙 1

Table 5: AHOs inferred from Endorsement Attributes

AHO Endorsement attributes
home <security-panel, disarmed>
home <motion-sensor, active>
fire <temperature-sensor, temperature>
fire <smoke-detector, smoke-alarm-state>

safety_state <co-detector,co-alarm-state>
illuminance <blind,openLevel>
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