2502.07257v1 [cs.SE] 11 Feb 2025

arxXiv

Testing Practices, Challenges, and Developer
Perspectives in Open-Source IoT Platforms

I*'Daniel Rodriguez-Cardenas
William & Mary
Williamsburg, VA, USA
dhrodriguezcar@wm.edu

4™ Adwait Nadkarni
William & Mary
Williamsburg, VA, USA
apnadkarni@wm.edu

Abstract—As the popularity of Internet of Things (IoT)
platforms grows, users gain unprecedented control over their
homes, health monitoring, and daily task automation. However, the
testing of software for these platforms poses significant challenges
due to their diverse composition, e.g., common smart home
platforms are often composed of varied types of devices that
use a diverse array of communication protocols, connections to
mobile apps, cloud services, as well as integration among various
platforms. This paper is the first to uncover both the practices
and perceptions behind testing in IoT platforms, particularly
open-source smart home platforms. Our study is composed of two
key components. First, we mine and empirically analyze the code
and integrations of two highly popular and well maintained open-
source IoT platforms, Open HAB and HomeAssistant. Our analysis
involves the identification of functional and related test methods
based on the focal method approach. We find that OpenHAB
has only 0.04 test ratio (=~ 4K focal test methods from ~ 76 K
functional methods) in Java files, while HomeAssistant exhibits
higher test ratio of 0.42, which reveals a significant dearth
of testing. Second, to understand the developers’ perspective
on testing in IoT, and to explain our empirical observations,
we survey 80 open-source developers actively engaged in IoT
platform development. Our analysis of survey responses reveals
a significant focus on automated (unit) testing, and a lack of
manual testing, which supports our empirical observations, as
well as testing challenges specific to IoT. Together, our empirical
analysis and survey yield 10 key findings that uncover the current
state of testing in IoT platforms, and reveal key perceptions
and challenges. These findings provide valuable guidance to the
research community in navigating the complexities of effectively
testing IoT platforms.

Index Terms—Internet of Things, Software Testing, Mainte-
nance, Unit test, Developer study

I. INTRODUCTION

The Internet of Things (IoT) platforms have proliferated the
broader computing landscape in recent years and have ushered
in new types of digital interactions. Some estimates project
that the number of IoT devices will eclipse nearly 30 billion by
2030 [1]]. IoT devices power increasingly popular smart home
ecosystems that aid users in automating daily tasks ranging
from controlling lights to implementing home security [2],
[3]]. IoT devices have also enabled new types of digital health

2" Safwat Ali Khan
George Mason University

Fairfax, VA, USA

skhan89@gmu.edu

5% Kevin Moran
University of Central Florida
Orlando, FL, USA
kpmoran@wm.edu

3™ Prianka Mandal
William & Mary
Williamsburg, VA, USA
pmandal @wm.edu

6 Denys Poshyvanyk
William & Mary
Williamsburg, VA, USA
denys@cs.wm.edu

ecosystems that help users to track their fitness and body [4],
and have even begun to power utilities at the scale of cities [J5].
While all of these applications of IoT devices and ecosystems
have afforded novel, convenient computing paradigms, the
engineering of such systems is not without its challenges.

IoT ecosystems are inherently heterogeneous by nature and
comprise smartphones, servers, devices, communication hubs,
online services, and end-user applications (see Fig. [T). The
design and engineering of each of the individual components of
these ecosystems, alongside their integration, pose significant
challenges to the design, implementation, maintenance, testing,
and evolution of their software components [6].

Software testing practices, in particular, are important for [oT
systems to ensure that both the functional and security/safety-
related requirements are properly met. While prior studies have
examined common bugs and general software development
challenges for IoT platforms [[6]—[8], we know little about
the current state of software testing in consumer-oriented IoT
platforms such as smart homes. That is, the research community
has a limited understanding of typical software testing activities,
processes, deficiencies, and challenges that engineers currently
face while working across all of the typical components of IoT
platforms.

To address this research gap, this paper presents an in-depth
study of the testing practices, and perspectives, in open source
smart home platforms. Our study has two major components.
First, we mine and empirically analyze the testing-related
code (=~ 37K test methods, from 12.904 test files) of two
of the largest and most active open-source IoT platforms,
OpenHAB [9]] and HomeAssistant [10]. Our choice to study
these two popular platforms in-depth was guided by two key
study design considerations: (i) they represent testing practices
across the range of IoT platform components, including, but
not limited to, core platform code, device integrations, and
integrations for online services, and (ii) they are entirely
open source, i.e., not only is the platform code available,
but so are the integrations, which are critical from a testing
perspective. Using a rigorous, systematic, open-coding process,

https://orcid.org/0000-0002-3238-1229
https://orcid.org/0000-0001-8220-4477
https://orcid.org/0009-0009-1329-9818
https://orcid.org/0000-0001-6866-4565
https://orcid.org/0000-0001-9683-5616
https://orcid.org/0000-0002-5626-7586

we identify the key purposes of testing-related activities and
their prevalence across our studied platforms. Moreover, we
quantify test coverage by defining the metric of test ratio,
which leverages the notion of the focal method (fin) (i.e., a
method with defined parameters, which is to be tested [[11[])
and the focal test method (ftm), i.e., a method to test all or
part of an fin). Intuitively, the test ratio can be defined as the
ratio ftm/ftm + fm (see Section Il for a detailed overview
of fm and ftm).

Second, we conducted a survey of 80 open-source developers
who work on IoT platforms and asked them about their testing
practices, experiences, and perspectives regarding the testing of
IoT platforms. A systematic, thematic analysis of these survey
responses helped us understand the rationale behind current
testing practices and pain points experienced by practitioners,
and provided actionable insights.

Our study resulted in 10 key findings (F1 — Fio) that
characterize the current landscape of software developers’
priorities (F2, Fs, Fg, Fi0), preferred approaches and per-
ceptions regarding them (F3, F4), and challenges they face
(F5, Fg, Fr) when testing IoT platforms. Particularly, we find
a significant lack of testing of both platform components and
integrations (F1), characterized by their computed fest ratio.
A majority, I.e., sensors, control-state, sensor components and
integrations with popular add-ons such as ‘Hue’, ‘Nest’ [[12],
‘SamsungTV’, ‘homekit’ add-ons fall below the test ratio of
0.5. Of HomeAssistant’s 937 add-ons, 610 or 65% have a
test ratio of below 0.5 and an average test ratio of 0.42 (Fy).
Our analysis also reveals what types of test targets developers
prioritize, e.g., OpenHAB reports 16 add-ons tests, 12 network
tests, and includes rule-based and authentication tests (F3).

Our analysis of survey responses reveals that developers
generally focus on performance, scalability, real-world sce-
narios, real-time collaboration, and security testing (Fs, F10).
We find that while automated testing is the preferred choice
among participants for identifying defects early with enhanced
reliability (F3), some developers advocate manual testing for
human intuition and adaptability in real-world scenarios (F;).
Developers also expressed significant challenges unique to IoT
platforms, particularly the validation of compatibility across
devices and platforms, debugging of firmware updates, and
the challenge of addressing issues in low-power mode (F5-
F7). Finally, a few developers express concerns about poor
documentation and the absence of organizational standards for
testing IoT platforms (Fy).

In summary, this paper makes the following contributions:

e An empirical investigation into the purpose of testing
related code in the OpenHAB and HomeAssistant open
source projects.

« A survey and thematic analysis of responses from 80 open
source developers who work on IoT ecosystems, to inves-
tigate developer perspectives and experiences regarding
testing practices, tools, processes, and challenges.

o Ten findings derived from the above two studies that
inform important directions for future research.

« A replication package that contains all of our data, analysis
code, and qualitative results to facilitate reproduction and
replication of our work [[13]].

II. BACKGROUND

The Internet of Things (IoT) represents the interconnected-
ness of everyday physical objects or ‘things’ via the internet.
These objects are equipped with sensors, gateways, software,
hubs, and other technologies, enabling them to collect and
exchange data not only among themselves but also with other
systems and applications via the Internet. In our study, we
outline our research questions concerning the landscape of
the most common IoT platforms, practices, and practitioners’
perspectives. This section offers an overview of IoT platforms,
including their layers, components, and common tests.

Tests (T1): 0¥ D Applications
Notifications, Access, Ul i
1
Tests (T2): Storage, Web @ Cloud
services, Database
/ \ Edge
Tests (T3): Firmware, = =y
Authentication, Protocol o &
Gateway 1 Gateway 2
Tests (T4): 1/0, Sockets, \ l1oT Devices

Connection

Tests (T5):
Connectivity, Events, 000
Rules ZigBee hub
Tests (T6):

] l
irmware, Device, @
Sensor satery, 12 |1 i L) G g

Triggers,
Configuration

cam Fridge GPS Smartwatch sensors Bulb Speaker

Fig. 1: 1oT platform layers and common tests per layer [6]

IoT platforms. An IoT platform is a software suite that
provides the framework and tools to facilitate the development,
and management of applications and connected devices. Those
platforms and devices constitute an ecosystem that automates
places like homes. In general, any IoT platform follows the
architecture and layers described in Fig. [T] [6]]. Fig. [T] depicts
four layers (i.e., IoT devices, edge, cloud, and applications).
The IoT devices layer involves smart programmable devices in-
teracting with the physical world through embedded sensors and
actuators. The edge layer consists of gateway devices with fewer
resource constraints, capable of locally handling telemetry data
collection, processing, and routing. These gateways interpret
diverse communication protocols like MQTT, CoAP, and HTTP,
managing device-device and device-cloud interoperability. The
cloud layer comprises remote 0T cloud servers that accumulate
and process telemetry data, communicating with heterogeneous
IoT devices for remote control and monitoring. IoT cloud
servers utilize a rule engine to enable users to write automation
logic, defining interoperability behaviors within the IoT system.
Finally, a user can utilize applications (apps) to interact and
control the IoT devices.

In our research, we evaluated open-source IoT platforms,
ultimately choosing OpenHAB [9|] and HomeAssistant because

of their widespread adoption. Both platforms are vendor-
agnostic supporting a large range of devices and network
protocols and allowing to connect and interact with products
from different manufacturers (i.e., Amazon, Alexa, Nest, Hue,
Homekit, etc). Both platforms allow users to create complex
interaction rules (i.e., turn off the lights at a given hour if the
motion sensor is not activated) using a user interface. Both
platforms are also actively supported by community and diverse
developers offering a wide range of add-ons, integrations, and
custom components.

IoT testing. Each layer within the IoT platform is susceptible
to failure, and the impact can cascade to subsequent layers.
Moreover, IoT devices, often deployed in unpredictable and
challenging environments, may encounter extreme conditions.
Potential tests are outlined in Fig. [T] are listed based on the
most common test for software components [[14].

T1: Application Tests - This layer focuses on user experience
and interface testing to facilitate coordination and access to IoT
devices. Common tests include UI/UX assessments, notification
functionalities, and smartphone integration [14].

T2: Cloud Tests - IoT device data is transmitted to cloud-
based platforms for storage, analysis, and accessibility. Tests
in this layer typically cover storage integrity, database access,
and web service functionalities.

T3: Communication Protocols - Various communication
protocols such as Wi-Fi, Bluetooth, and cellular networks
enable IoT devices to connect to the internet and other
devices. Tests here include router firmware evaluations, network
authentication, and protocol compliance checks.

T4: Network Connectivity - 10T devices require stable
connections to broader networks through standard protocols.
Tests focus on input/output data validation, socket connections,
and data delivery reliability.

T5: Intermediate Hubs - Intermediate hubs facilitate device
control with specific requirements. Tests involve event valida-
tion, connectivity checks, and rules configuration, where rules
define configurable routines for device actions.

T6: Firmware and Resource Optimization - 10T devices
utilize firmware to monitor, control, and optimize processes.
Tests concentrate on optimizing limited resources such as
battery and memory, alongside fundamental configuration and
trigger event validations.

A common functional software artifact deployed on each
device is the add-ons. For instance, devices such as cameras,
sensors, and speakers can be seamlessly integrated into the
platform as add-ons. Each add-ons comprises multiple software
components, including but not limited to battery management,
sensor control, event handling, data collection, and network
connectivity. These components serve as the fundamental
building blocks across all IoT layers. Consequently, components
are omnipresent throughout the IoT platforms. Each platform
can have collaborations with private companies such as Hue,
Amazon Alexa, or Apple HomeKit.

Focal Methods. Our goal is to identify testing practices
across widely-used open-source IoT platforms. One common
approach for assessing test coverage involves running tests

and determining which functional blocks and lines of code
are executed. However, applying this method across diverse
programming languages, add-ons, and core components— in
IoT platforms like OpenHAB and HomeAssistant — poses
significant challenges. Executing test coverage in these envi-
ronments requires configuring various files, setting up specific
environments, and integrating multiple devices for testing
purposes [[15[], [16].

Our investigation adopts an agnostic approach to identify
tests within IoT add-ons and component code. To achieve this,
we utilize the concept of focal methods to pinpoint functional
and test methods. According to Tufano et al. [[11]], a focal
method (fin) refers to a method within a functional block that
has defined parameters. Each fin can be tested by zero or n
focal test methods. A focal test method (ftm) is a functional
code block specifically designed to test either a portion or the
entirety of an fin. The primary purpose of ftms is to capture the
intent and structure of human-written tests, ensuring traceability
between tests and code under test.

Focal methods provide a mechanism for identifying both
functional methods and their corresponding tests within a
component. The concept of a fin (Fig. is based on the
principle that all code is organized into files, and these files
follow a structured format dictated by the syntax of the
programming language (PL) [L1]. In object-oriented PLs (e.g.,
Java), this structure is particularly clear, and five levels of
context can be identified:

Focal Method (fm): this first level represents a set of public
methods with bodies that contain the most critical information
for generating test cases. These are the functional code blocks
that can be executed and tested.

Class Context (fm + c): the second level adds the class name
to the focal method, providing the necessary context about the
class to which the method belongs.

Class Constructor: includes the class constructor, which
offers details on how to instantiate the class to enable testing.

Auxiliary Methods: comprise supporting methods (e.g.,
getters and setters) that are required to invoke the focal method.

Class Attributes: encompass the set of attributes at the class
level, which contribute to the functionality of the class.

III. RESEARCH QUESTIONS

In this research, we seek to learn more about IoT developers’
perspectives regarding their test objective, common practices
and techniques, test case design decisions, and challenges
they face. By understanding what components are commonly
tested, and the techniques used, we can not only gain insights
into what areas might benefit from the development of new
tools or techniques but also identify which parts of the system
developers view as most critical or complex. This will guide
the efficient allocation of testing resources and better focus
future testing strategies, ultimately improving the reliability and
performance of IoT applications. To evaluate how developers
are currently testing IoT platforms, the practices they follow,
and the challenges they face, we pose the following RQs:

Focal Method

- |public class HuelightHandler extends BaseThingHandler{

fm

@0verride

v public void handleCommand(String channel, Command command, long

fadeTime) {

HueClient bridgeHandler = getHueClient();

final FulllLight light = lastFulllight == null ?
bridgeHandler.getlLightById(lightId) : lastFulllight;

- if (light == null) {

logger.debug(""Hue light not known on bridge. Cannot
handle command.");

v updateStatus(ThingStatus.OFFLINE, ThingStatusDetail

.CONFIGURATION_ERROR,
"@text/offline.conf-error-wrong-light-id");

return;
i
} path: src P g java

Test

Focal Test Method

~public class HuelLightHandlerTest {

ftm)
@Test
- public void assertCommandForColorChannelDecrease() {
HueLightState currentState = new HuelightState().bri(200);
String expectedReply = "{\"bri\" : 170, \"transitiontime\" :
41"
assertSendCommandForColor(IncreaseDecreaseType .DECREASE,
currentState, expectedReply);

currentState.bri(20);

expectedReply = "{\"on\" : false, \"transitiontime\" : 43}";

assertSendCommandForColor(IncreaseDecreaseType .DECREASE,
currentState, expectedReply);

+ Path: /src/test/java/org/openhab/binding/hue/internal/handler/HuelightHandlerTest.java

Fig. 2: Focal method (fm) and focal test method (ftm) example.

RQ: What are the proportion of focal test methods for add-
ons and commonly components in open-source 1oT platforms?

RQ> What is the purpose of current testing-related code and
processes in open-source loT platforms?

RQ3 How do developers design tests for loT platforms?

RQy What tools, techniques, and processes do developers
currently employ for testing loT platforms?

RQs What challenges do developers face when testing loT
platforms?

IV. 10T PLATFORM ANALYSIS

The following section describes the steps for collecting,
curating, standardizing, and labeling each component from
OpenHAB [9] and HomeAssistant [[10] as well as includes the
results from our analysis.

A. Methodology

To answer our we designed a semi-automated pipeline
to collect and classify testing artifacts we found from OpenHAB
and HomeAssistant.

1) Data extraction: Our data is collected from the public
GitHub repositories reported at HomeAssistant and OpenHAB
platforms (see Figure [3| D). Each platform reports a set of
projects depending on the core architecture, brands, or operative
systems. Notably, each platform adopts a distinct code organiza-
tion and architecture. For instance, HomeAssistant, designates
a test directory within its repository, exclusively housing
test codes for each add-ons. While OpenHAB developers

@ Repository data extraction

(&9

Clone repo

loT add-ons / Components

@g @] |:> Soft.

o g Unit

¥ E
@ Manual Analysis

44 {78]

Disagreement

Home
Assistant

®
GitHubI_) @

OpenHab

@Classes and methods .
Labeling

extraction Resolve
/ ey -@
> <>
Code Folder ﬁ H L%) ’
Packages

Test
Identification

Methods Focal Methods

Fig. 3: HomeAssistant and OpenHAB platform analysis steps.

maintain test codes for each add-ons within their project folders.
OpenHAB’s repositories exhibit a variety of code languages,
with Java being the most prevalent, accompanied by instances
of Python, JavaScript, and Kotlin (see Table [). We noticed that
OpenHAB lacks a standardized naming convention for Java
classes, with names such as “Test”, “Stub”, or “Mock”, adding
a layer of complexity to the analysis.

2) Automated test identification: The step-2) includes
the identification of the source folder, classes, and meth-
ods. We use regex expressions to isolate folders with
functional code from tests. For instance, Java-based add-
ons, usually match the test folder and file name (e.g.,
src/test/Jjava/FooTest. java) to the corresponding
functional code path (e.g., src/main/java/Foo. java).
Fig. [2] illustrates a linked frim with the correspondent fin
HueLightHandler class. That is not the case for differ-
ent PLs like JavaScript or Python. In that case, we look
for name matching, for example, x.python is tested by
x_test.python. We also aim to identify classes and
methods via abstract syntax tree (AST) with tree-sitter tool
[17]. The AST helps to confirm a valid code file and identifies
structures, such as the methods, functions, and variables.

3) Test analysis: requires ascertaining the number of
tests per component and their proportional relationship with
the functional code. Therefore, we focused on identifying fin
and ftm as described in Sec. [II| at step-(3). A fim exclusively
incorporates the signature, parameters, and body function. To
identify a test we look not only to the test folder and files but
also a ftm inside each file (i.e., method within a test class with
the @Test annotation) (Fig. [B). Once we identify the focal
methods and focal test methods per file, we count them to
obtain a proportion by file, component, add-ons, and platform.

4) Manual Analysis: The fourth step-4) aims to validate
the identification of focal methods and focal test methods. It
allows us to confirm our proportion number to answer
and also enables the labeling process to answer

To inspect the OpenHAB platform, we selected the top 36
add-ons ranked by the highest count of ftm and classes. Then we
analyzed the top 10 test files with the most significant number

of methods and classes. In this way, we ended up manually
analyzing a total of 360 test files from a total of 5,597 test
files. Labeling is about assigning a common category to the
given ftm intention. In this step, two authors look through the
ftm to describe their intended purpose and functionalities. The
authors scrutinize each test file to identify the components
under examination and assign multiple labels accordingly.
For instance, in files such as test_sensor.py, developers
frequently assess functionalities such as air quality, temperature,
storage component setups, signal strength, network speed,
voltage stability, and battery levels. These features are then
generalized by labeling them as ‘sensor’, ‘storage’,
and ‘network’ (see Figure [).

The manual inspection procedure for Home Assistant in-
cludes an additional step. We observed that HomeAssistant
repeats a set of filenames across multiple add-ons. For instance,
test_config.py appears in 552 different add-ons, and
test_sensor.py appears in 267 add-ons. The test files with
the same name serve similar testing objectives over different
add-ons; For example, test_notify.py tests various types
of asynchronous notifications for both Google Mail and Slack
components and add-ons. Leveraging this fact, we narrowed
our focus to the top 43 filenames, each appearing more than 10
times. For each of these 43 filenames, we randomly selected 10
instances and conducted a manual inspection of the source code.
We selected the top filenames since they represent the biggest
IoT systems and 10 is the average to frequency. This yielded
a total of 430 manually inspected files for HomeAssistant. The
number of inspected files for OpenHAB and HomeAssistant
constitutes a representative sample, providing a confidence
level (z-score) above 95% (see Tab. [I).

Table [I] summarizes our test file selection process. The
labeling process was executed in two phases. After each phase,
the authors met to finalize the labels and resolve disagreements.
This collaborative approach ensured alignment and prevented
mislabeling or focus on incorrect label categories.

B. Results from the Analysis

In this section, we present our findings after applying our
methodology for extracting both focal methods (fm) and focal
test methods (ftm) for OpenHAB and HomeAssistant platforms.
Table [I| outlines popular add-ons for each platform ordered by
their number of source files. Some add-ons are well-known
brands such as Alexa [18]], Nest [12]], or Homekit [19]. We
calculate the test ratio as ftm/(ftm + fm), with a threshold
of 0.5 to flag low scores. While this threshold doesn’t guarantee
each fim has a corresponding ftm, it helps assess the ftm
distribution. We report the average and standard deviation.

In our analysis of OpenHAB, we identified 406 add-ons
with a total of ~ 7K source files. We observe a low test
ratio averaging only 0.04. That means that there are more
functional methods than methods for testing them. Notably,
some components like SamsungTV lack any identified fim
in Java versions. We found a total of ~ 76K fm, but just
identified ~ 4K frm. Additionally, our analysis extended to
extra OpenHAB repositories not included as add-ons in the

TABLE I: Most common add-ons per platform and test ratio

OpenHab common add-ons test ratio score

Add-on Source files Test files fm ftm Test Ratio
tapocontrol 8 8 399 35 0.08
enigma2 6 6 100 109 0.52
mielecloud 66 65 766 632 0.45
loxone 32 31 274 196 0.42
omnikinverter 10 1 39 24 0.38
wemo 52 11 199 58 0.23
nest 109 22 562 109 0.16
hue 12 11 982 125 0.11
irobot 1 1 74 6 0.08
samsungty 32 32 218 0 0.00

Total 7071 5597 76453 4585 -
avg[std] 39.41[68.65] 188.31[220.86] 11.29[43.03] 0.04[0.09]
min - max 1-632 0 - 635 0 - 0.60
Home Assistant common add-ons test ratio score
recorder 57 51 714 1114 0.61
tplink 23 27 108 156 0.59
template 26 34 304 331 0.52
hassio 24 20 235 247 0.51
unifiprotect 29 33 260 261 0.50
esphome 39 39 318 306 0.49
zha 36 33 348 332 0.49
matter 29 69 175 166 0.49
group 22 21 207 195 0.49
homekit 27 30 316 296 0.48
Total 9176 7307 40480 32735 -
avg[std] 9.80[5.92] 7.81[9.16] 4324[60.84] 34.97[79.47] 0.42[0.16]
min - max 2-57 0-110 1-714 0 - 1654 0.02 - 0.88

* add-ons with more than 20 source files for HomeAssistant. Gray rows
indicate well-known components. Underscore indicates above the threshold.
Bottom the total, avg, min, and max number of elements across all add-ons.

main project. For example, we observe that Z-Wave and Alexa
exhibit test ratios of 0.25 and 0.2, respectively.

For HomeAssistant, we observe higher test ratios observing
an average of 0.42 but with a high variability of 0.16. Therefore,
we could observe some components with even more ftm than
fm (i.e., recorder) but some components with a low test ratio
(e.g., homekit). Interestingly, well-known brands like Alexa and
google_assistant both with 0.38 of test ratio. We also noticed
a lower number of test classes. This is due to the lack of class
definitions, however, we identified ~ 40K fin and ~ 32K ftm
across the total of add-ons.

In our analysis for HomeAssistant, we identified that 937 add-
ons which contained test codes, only 327 of those have a test
ratio above the threshold of 0.5. We select the 0.5 threshold as
the upper values represent beyond the half proportion on tested
code, however, practitioners can use higher thresholds. In other
words, HomeAssistant reports 65% of add-ons with a poor
number of tested methods. The same analysis for OpenHAB
reports that just 3 add-ons achieve this threshold.

Finding 1 (F;) — Only 3 out of 406 OpenHAB add-ons
surpass our test ratio threshold of 0.5. HomeAssistant has
327 add-ons that have a better test over the 0.5 threshold
but reports high variability with a standard deviation of 0.16.

Figure [4] on the left, depicts the test ratio among the add-ons
and the labeling components within add-ons on the right. The
test ratio distribution demonstrates a larger number of imple-
mented add-ons for HomeAssistant and a stable number of ftm
above (.2 but below 0.5. Nevertheless, OpenHAB test ratio is
mostly below 0.2. HomeAssistant’s exclusive tested components
like ‘switch’, ‘button’, ‘cover’, and ‘trigger’
indicate the platform’s concentrated efforts towards refining
user-facing elements and interaction mechanisms. In contrast,
OpenHAB’s exclusive tested components such as ‘rule’,

Test Ratio Per Add-on Tested Components

= Home Assistant
openHAB

W ome Assistant @ Opentan

Test Ratio

5
%
&

< &
& S R &
S ey

B &
N &
& & &

%

Add-ons

Fig. 4: Left: Test ratio per add-ons. Right: Top ten tested
components for HomeAssistant and OpenHAB

‘authentication’, and ‘status’ reflect the platform’s
strong emphasis on rule-based automation, security, and system
organization.

The components common to both HomeAssistant and Open-
HAB, such as ‘scene’, ‘light’, ‘configuration’,
and ‘sensor’, signify functionalities fundamental to any
smart home platform. These components represent core el-
ements necessary for device management, configuration set-
tings, and environmental sensing. ‘Events’, ‘control
state’, and ‘status notification’ highlight the
focus on real-time updates and event-driven actions, ensuring
users stay informed about their smart home ecosystem’s status
(see Figure [top). These components signify a common
commitment between HomeAssistant and OpenHAB to ensure
the reliability, functionality, and interoperability of essential
features within smart homes.

Finding 2 (F2) — HomeAssistant developers concentrated
on enhancing user-facing elements and interactions, whereas
OpenHAB developers prioritized rule-based automation.
However, both platform developers focused on the core
functionalities of smart home platforms.

F1 and F2 Demonstrate that OpenHAB has a poor test
ratio and HomeAssistant has 65% add-ons below the test
ratio threshold. The most common tested components are
devices, network, and sensor parameters for OpenHAB and
control state, device, and configuration for HomeAssistant.
HomeAssistant exclusively tests components such as switch,
button, and cover, while OpenHAB reports rule-based, status,
and ecosystem group tests.

To answer we provided 12 common test types com-
monly employed in regular software testing scenarios, such
as web solutions, services, and applications (Tab. . We
identify several of these testing types in our analyzed platforms.
The simplest and most prevalent test type is the unit test.
While HomeAssistant and OpenHAB report usability tests,
we note that the complete implementation and results are
not available in the repositories. Brands and communities
potentially could employ an issue tracker tool independent
of the GitHub repositories. As a result, we categorize usability
and regression testing as “Maybe”, indicating a potential
implementation. Interestingly, we observe automation pipelines
for HomeAssistant, encompassing platform deployment, and

some device configuration and testing. However, similar scripts
or pipelines are not evident for OpenHAB. Table |lI| also maps
the tests to participants’ preferences, which we describe in
Section [V]

TABLE II: Test types and the observed type of test in repositories.
Challenges reported on each type of test in the survey

Test process Purpose using testing techniques

Platforms

Test Type Home Assitant ~ Openhab Automated Manual ~ Testing IoT
Unit Testing v v ND ND X
Integration Testing X v ND ND X
Functional Testing X X X v X
End-to-End Testing X X ND v X
Performance Testing X X v ND v
Security Testing X X ND ND X
Usability Testing Maybe Maybe X v X
Regression Testing Maybe Maybe v X X
Accessibility Testing X X X v X
Compatibility Testing X X X X v
Database Testing v v ND ND X
API Testing v v v ND X
CI/CD Testing 4 X v X X
Exploratory Testing X X X v X
User Acceptance X X X v X

Tests for API services and device-cloud communication
insurance. Some scripts test databases and parameter config-
urations for multiple devices. Continuous Integration is also
considered in the process.

V. 10T DEVELOPERS’ PERSPECTIVES ON TESTING

The analysis of platform code in Section develops a
data-driven characterization of the extent of testing in smart
home platforms. However, this characterization must also be
complemented with an understanding of why the state of
testing is as it is. To this end, we present a survey-based
study of developer perspectives on IoT testing, with the goal of
understanding the key pain points experienced by developers,
their priorities, and preferences that may affect how testing is
carried out. This section describes the design of our survey, our
coding and thematic analysis approach, and the key findings.

TABLE III: Open-ended questions from survey

1D Question

OQ1 What are the testing techniques that you employ and why?

0Q2 What is your process for designing test cases for different types of products?
003 What tools/APIs/frameworks do you use to support the testing of IoT products?
004 How do you evaluate the effectiveness of your test cases/suites?

005 How do you typically resolve flaky tests?

0Q6 What are the main challenges that you have encountered when testing IoT
products?

What would you improve in the current software testing process for IoT
products?

What would you improve in the current software testing or debugging tools?
Have you ever faced any specific debugging-related challenges for IoT products?

007

008
009

A. Survey Design

Our survey consists of several questions on current testing
practices and preferences, challenges the developers face, and
the improvements they envision and organized as follows:

« Demographic Information: basic demographic information
such as age, gender, and education.

« Background Information:includes employment status, years
of general programming experience, loT-related programming
experience, and testing experience. We also asked how the
participants learned about software testing.

o Testing Practices and Preferences: type of IoT product
participants work on and the type of documentation they use
for specifying IoT-related requirements for those products. We
then asked about their preferred testing approaches and why
they follow them. Furthermore, we asked them to provide
information about their process of designing test cases and the
tools they use to support the process. Next, we asked them
about their evaluation process of those test cases. We also
asked them if they had encountered any flaky tests during
their testing process and how they resolved them. Finally, we
asked whether they created test cases for reported bugs and
the origins of those bugs.

« Challenges and Expectations: After obtaining information
on IoT developers’ current testing practices, we asked them
about the challenges they encountered when testing and
debugging the products. Furthermore, we asked them what
improvements they desired in the current testing and debugging
process and tools.

TABLE IV: Demographic information over n=80 participants

Age Education
18-29 30-39 40-49 50-64 | High School Collage Vocational Bachelor Master Doctorate
n 6 48 24 2 3 12 14 45 E
T 75 60 30 25 375 15 17.5 56.25 6.25 1.25

C. Results from the Analysis of Survey Responses

In this section, we analyze the responses provided by the
participants and answer [RQ3} [RQ4] and [RQ3]

1) Test design and evaluation: OQ; and OQ3 responses were
used to answer [RQs| To design appropriate tests for their apps,
developers start by learning the test requirements. Then they
create a test plan by determining test goals, which may involve
identifying corner cases, and in the process, building test
scenarios. As P63 states, “Once I have a clear understanding of
the product, I create a test plan that outlines the scope of testing,
including the devices, protocols, and communication methods
involved in the IoT system.” Some developers emphasized
performance testing to assess speed and scalability. Security
testing is also deemed crucial to developers, especially, as P16
states, “...for products dealing with sensitive information.”

Test effectiveness is evaluated by assessing its maintainability
and execution time. Coverage-based evaluation is another
popular assessment in which developers consider requirements
and use-case coverage as well as code coverage and mutation
analysis. Compliance with organizational standards is also
considered to measure test case effectiveness.

Gender

Male Female 0-3

n 72 8 5 7 21 47 19 20 39 2
P 90 10 6.25 8.75 26.25 58.75 23.75 25 48.75 25

Programming Experience Testing Experience
3-5 5-10 35 5-10

10+ 0-3

1) Participant Recruitment: We recruited participants from
multiple IoT platform developers’ community forums (e.g.,
OpenHab community, Home Assistant community, SmartTthing
community, and Google Nest community) by posting a flier. We
received a total of 186 responses, of which we discarded 106
responses due to (i) failed attention check questions, (ii) not
finishing the survey, (iii) ambiguous responses, or (iv) duplicate
responses. Finally, we obtained 80 valid responses (denoted
as P1-P80), which we analyzed and presented our findings
in Section [V-C| Our survey took an average of 15 minutes to
complete, and we offered a 10 USD Amazon Gift Card to each
participant. Table [[V| provides demographic information about
all of 80 participants. Most participants were male (90%), all
were at least 18 years old, and most were between 30 to 49
years of age (90%).

2) Ethical Consideration: The study protocol was approved
by our Institutional Review Board (IRB). Participants were
informed about the study’s goal before participating, and they
willingly provided their consent to participate in the study and
to disclose anonymized survey responses and quotes.

B. Coding and Analysis

We used descriptive statistical analysis to present the
quantitative results. To analyze nine free-text questions, we

used thematic analysis with an inductive coding approach [20].

Two out of three authors randomly selected a question and
coded the data independently. After completing the coding,
authors met and discussed any disparity in their codes and
finalized the code after reaching a consensus. After all the
responses were coded, all three authors discussed to extract
themes or patterns in the answers.

Developers emphasize creating a comprehensive test
plan after defining the product and testing scope, focusing
on devices, protocols, and communication. Performance and
security testing are crucial for sensitive data, with evaluation
based on maintainability, execution time, coverage, and
compliance.

2) Current testing practices and preferences: Table |ll| from
Section [[V| not only maps common testing techniques to our
observations (of the presence/absence of the techniques) in
our analysis of OpenHAB and HomeAssistant, but also maps
them to participants’ responses regarding why they use (or
don’t use) the specified techniques (e.g., for manual analysis,
automated analysis, or IoT testing in general). We observe that
developers lean towards one technique over the other based on
the nature of the test. For instance, developers opt for manual
testing to ensure requirement compliance, evaluate interfaces,
explore corner cases, and validate solutions. Conversely, they
emphasize that automated testing is beneficial for evaluating
performance, ensuring regression tests, and implementing
continuous integration. For certain test types, we could not
find any related answers; thus, we designated them as “Not
Defined” (ND), signifying a lack of evidence regarding the use
of automated or manual techniques, particularly for security
evaluation or database testing.

Participants mention a set of tools oriented to the test and
quality assurance such as Cucumber and Kibana, In addition to
those tools, testing IoT protocols and connectivity associated
with scripting are essential for device and network testing. We
observe that just a few of them are dedicated to monitoring
and data visualization.

Our analysis of the comments from participants leads to
an understanding of their preferences. Particularly, we found
that almost all of our participants expressed a preference

for automated testing, followed by manual testing and semi-
automated testing. The participants value the automated tests
mainly because of their efficiency, speed, and coverage. The
automated test enables cross-platform testing, continuous
testing, and performance testing. There is a focus on identifying
defects early in the development process to reduce costs and
improve reliability, as P46 states, “Automated testing helps
catch bugs early in the development process, reducing the cost
of fixing them later.”.

Finding 3 (F3) — Automated testing is preferred by most
participants. There is a focus on identifying defects early
in the development process to reduce costs and improve
reliability. Consistency in results and repeatability are also
highlighted, along with the importance of generating detailed
logs and reports.

Some participants prefer manual testing to test new features
or achieve flexibility to requirements changes. Moreover, de-
velopers emphasized the need to develop a deep understanding
of the system, guided by human intuition, e.g., as P4 states,
“I want to see the nuts and bolts of how a thing works so 1
can better understand how to make it work the way I want.”.
Participants also claimed that security issues are easily verified
using manual testing, which is particularly interesting, given
that a recently study Ami et al. [21] found that in general,
developers prefer automated security tools for testing over
manual analysis, given their rigor and ability to catch what
developers miss. Finally, developers expressed that manual
testing also helps evaluate user experience and accessibility.

Finding 4 (F4,) — Some developers recommend manual
testing for its ability to bring in human intuition, adaptability,
and a nuanced understanding of user experiences which can
help test real-world scenarios.

Some developers adopt a semi-automated approach to bal-
ance automation and manual testing, including human judgment
and interactions for programs that cannot be automated. As P64
explains: “I use semi-automated testing because it allows me to
strike a balance between manual testing and automation. Some
aspects of IoT devices and applications require human judgment
and interaction that can’t be fully automated.”. Testers decide
to use a hybrid between automated and manual testing mostly
because of the flexibility in performing regression tests adding
new features and testing real-world scenarios.

Finally, we find that developers resolve flaky tests mostly by
updating and reviewing environment setups, analyzing logs, and
optimizing test scripts. For resolving issues within the source
codes, developers analyze test logs, review test scripts, and fix
synchronization issues by adjusting wait times or implementing
retry mechanisms.

Based on F3 and F4, Developers favor automated
testing for early defect detection, cost reduction, regression
testing, and managing changes, supported by monitoring and
visualization tools for timely failure identification. However,
manual testing remains essential for special cases and log
analysis.

3) Current challenges and future research scope: Our
survey revealed several challenges developers face when
testing IoT platforms and devices (RQs). A major challenge
expressed by several developers was about ensuring seamless
connectivity and communication between devices and platforms
as challenging, as there is no common platform. Particularly,
developers expressed how testing compatibility across a vast
array of devices supported by various platforms is a time-
consuming task.

Finding 5 (F5) — A primary challenge encountered by
developers in testing IoT apps is validating compatibility
across various devices and platforms.

Similarly, ensuring the devices continue to work seamlessly
with over-the-air updates, including both the software and
firmware, is a major concern. There are many IoT devices,
such as, motion sensors, which run continuously. Delivering an
update to these devices poses a significant challenge due to the
potential for operational disruptions. As P17 states, “Firmware
over-the-air (FOTA) updates can be problematic, especially
when dealing with a large number of devices. Debugging issues
related to the update process, like interrupted downloads or
failed installations, requires thorough testing.”

Finding 6 (Fs) — Developers face difficulties in debugging
issues when a firmware update disrupts the functionality of
an IoT product.

Moreover, performance testing is another challenge for de-
vices that operate on low resources. As P12 states, “Identifying
why a device fails to wake up or operate as expected in low-
power states can be a complex task.” Sensor data inaccuracy
also affects the debugging process when network interference
or extreme weather conditions introduce noise in the data.

Finding 7 (F7) — Developers also face challenges during
testing or debugging in low-power mode.

Developers perceive that the current test infrastructure
lacks equipment and tools to simulate real-world scenarios,
including extreme weather conditions or network interruptions.
Scalability to handle larger IoT deployments and conduct
performance testing is another major concern. Compatibility
testing is mentioned for ensuring support over a wider range
of devices. Strengthening security tests is also important to
identify vulnerabilities and potential weaknesses. Some think
that better documentation can help facilitate knowledge sharing
and collaboration.

Current tools can benefit greatly if they offer automated
test reporting, visualization, and prioritization. As P45 states,

“Debugging tools should offer more comprehensive support
for analyzing and visualizing complex data structures and
their changes during runtime.” Cross-platform testing needs
improvement according to some developers. As P50 states,
“Improved cross-platform support in debugging tools would
be valuable, allowing developers to debug code running on
different operating systems seamlessly.” Real-time collaboration
in testing is another talking point among the developers as it
can allow multiple team members to debug and troubleshoot
issues simultaneously.

Finding 8 (Fg) — Performance, scalability, real-world
scenarios, and real-time collaboration are the major concerns
for developers facing IoT components debug and test.

The open-ended responses gathered from the survey help us
unveil some crucial aspects of IoT app testing that require atten-
tion and consideration. Particularly, we found that only a few
developers worry about lack of standards and documentation,
relative to the issues highlighted in Fg.

Finding 9 (Fy) — Few developers are concerned about poor
documentation and lack of organizational standards and
procedures for testing IoT platforms.

Finally, the acknowledgment of compliance with organiza-
tional standards as a metric for measuring test case effectiveness
underscores the importance of aligning testing procedures with
established benchmarks. Likewise, the emphasis on security
testing within intricate IoT environments resonates as a critical
area, where vulnerabilities or misconfigurations might remain
undetected until a security breach occurs.

Finding 10 (F;() — Security testing is a critical area where
vulnerability detection becomes more difficult due to the
diversity of devices and components and lack of IoT oriented
testing tools.

[oT development faces challenges like communication
platform limits, knowledge gaps, and unclear user requirements
due to poor documentation. Key issues include testing diverse
devices, addressing security, optimizing power, ensuring real-
time responsiveness, and managing updates and firmware.
Persistent problems involve standardization, third-party inte-
gration, and testing across networks.

VI. DISCUSSION

While we managed to find answers to our five RQs, the
overarching goal of our research is two-fold: to 1) learn about
the general testing practices of IoT developers, and 2) Uncover
the key gaps related to testing [oT platforms. Based on these
goals, we present the following discussion topics.

A. Primary Focus on Unit Testing

Our analysis of OpenHAB and HomeAssistant demonstrates
that the primary focus is on unit testing. This empirical
observation also resonates with findings from our user survey,

i.e., a majority of the participants solely rely on automated
testing (F3), and manual testing techniques such as user
acceptance or exploratory testing are generally absent from
practice, except in rare cases (F4).

Particularly, User Acceptance Testing (UAT) offers eval-
uation of an application from the end-user perspective and
validates the readiness of its deployment to the real-world
environment [22]]. During our survey, [oT developers did not
emphasize on this type of testing. The reason for not employing
UAT is because of its dependence on manual effort and its
time consuming nature. Although recent works have focused
on automating this process using large language models [22].
Exploratory testing can help in the continuous integration and
delivery pipeline for a large-scale software system [23]], which
was one of the more common concerns among the participants.
While there is recent work on performing exploratory testing
using static analysis [24]] or in a gamified way [25]], additional
research is necessary to evaluate the usability and efficiency
of such techniques in the IoT context.

Similarly, we observe no integration testing in our analysis
of OpenHAB and HomeAssistant. One explanation for this
observation could be the sheer difficulty of testing across vari-
ous diverse platforms and devices, as perceived by developers
in our study (F5), particularly given concerns regarding the
unpredictable impact of firmware/software updates (Fg).

B. Compatibility Testing and Future Solutions

Several participants talk about the importance of compati-
bility testing in the context of IoT apps and integrations (F5),
which is challenging due to the general fragmentation in the
smart home landscape, in terms of platforms, communication
protocols, networking standards, operating systems, and types
of devices and sensors. Ensuring compatibility among these
diverse technologies is crucial for IoT platforms. The absence
of robust compatibility testing across all technologies may
lead to post-release issues, ranging from user inconvenience
to severe security vulnerabilities. This is a timely and critical
challenge, as developers invest substantial time in repetitive
tests across varied technologies, dealing with debugging issues
that arise post-deployment.

Given the general lack of integration testing and the
concern among developers regarding compatibility and testing
in the fragmented IoT space, the integration of simulation
environments into the testing apparatus offers a promising
direction for future research. Simulating real-world scenarios
involving varied device types and communication protocols
would allow developers to validate changes with increased
robustness. Furthermore, advancements in IoT interoperability
frameworks, automation in testing procedures, and the potential
infusion of machine learning or Al-driven testing solutions
hold promise in mitigating compatibility challenges.

C. Performance Testing and Scalability Challenges

Managing scalability and performance in IoT software
emerges as a complex task, particularly in large-scale de-
ployments (Fg). As the IoT platforms expands, devices get

interconnected with a multitude of other devices and data
points, which makes testing of these devices and apps more
challenging. These challenges are crucial as they directly impact
system reliability, efficiency, and user experience. This issue
is inherently tied to IoT due to its vast array of user base, and
continuous data exchange occurring among the devices.
Upgrading the testing infrastructure to accommodate scala-
bility testing at various levels of deployment can be a potential
research direction. Tools enabling continuous integration to
identify and resolve performance bottlenecks in real-time can
help in mitigating this issue. There are existing tools available
that address performance and scalability testing in various
domains, such as Apache JMeter [26], Gatling [27]], Taurus [28].
However, their applicability in IoT scenarios may be limited
due to challenges in simulating complex IoT environments and
diverse communication protocols. These unique, IoT-specific
challenges demand more specialized testing solutions.

D. Improvements in loT Testing Compliance

The responses from IoT developers regarding organizational
standards in testing (F9) reveal a significant emphasis on
adhering to company policies, industry standards, and reg-
ulatory requirements. Testing for compliance with industry-
specific regulations, such as medical device or automotive
safety standards, or privacy regulations such as GDPR [29]
and CPRA [30] in the context of smart homes, adds complexity
to the testing process. Addressing these challenges requires an
approach involving robust compliance testing methodologies
with continuous monitoring. The IoT industry can benefit
greatly from tools that can analyze historical compliance data,
regulatory changes, and industry-specific standards to detect
potential areas of non-compliance.

VII. THREATS TO VALIDITY

Threats to construct validity include concerns over the test
ratio in automated analysis compared to test coverage, due to
the complexity of components and environments. Traceability
issues on some platforms obscure links between test and
functional code. To address this, we combined quantitative
analysis with manual inspection by two authors, providing
insights into developers’ testing intentions, supported by survey
responses.

Threats to internal validity refer to the representativeness of
the randomly selected tests at the labeling process and reported
components. We sorted the add-ons and components to identify
the largest number of focal methods and focal test methods.
We calculate the z-score on our test file sampling and manual
inspection to achieve the 95% confidence.

Another potential internal validity of our study lies in the
subjectivity inherent in the manual analysis of test codes.
To address this, we adopt a paired analysis approach, where
analyses are conducted collaboratively. This helps us minimize
individual biases. To avoid misdirection while individual coding,
we conduct our analysis in multiple phases. We observed a
substantial decrease in disagreement rates as we progressed
through the latter phases of analysis.

10

VIII. RELATED WORK

While studies have examined testing practices for industrial
software [31]], [32] and mobile apps [14], [33[, [34], this
research focuses on the challenges of software testing in
IoT. It highlights persistent bugs despite significant time,
resources, and testing efforts, as well as developers’ practices
and perceptions of test case design, automation, and quality
metrics.

Research on IoT platforms has explored tools for bug
detection [16]], [35]—[38] and highlighted the complexity of
testing such systems [15], [39]. Bures et al. [40] emphasize
the need for specialized testing methods tailored to IoT.
Surveys focus on bug detection, security failures [3[], [6],
[41]]-[46], and future directions. Zhu et al. [47]] predict trends
toward intelligent, large-scale testing, emphasizing big data,
cloud computing, and Al Increased adoption of Smart Home
solutions has led to security evaluations, such as Google’s Nest
and Philips Hue platforms, revealing key vulnerabilities and
potential misuse [2], [12].

Previous research focuses individually on tools and methods,
introducing challenges on specific topics like cloud computing
or some security concerns, this study aims to acquire a deeper
understanding of the testing methodologies currently employed
by IoT developers. We seek to grasp the big picture about how
developers are testing IoT platforms and the rationale behind
their choices and collect insights regarding potential areas for
enhancing future testing practices in IoT.

IX. CONCLUSIONS

Our examination of the landscape of software testing within
IoT platforms derived substantive insights, with 10 key findings
from both a mining-based study and a survey with developers.

We took a closer look at two specific platforms — HomeAs-
sistant and OpenHAB. We find notable evidence signaling the
difficulty that developers face with testing IoT platforms, with
the majority of add-ons and integration apps of both platforms
falling short of the 50% test coverage threshold. On average,
only 5% add-ons contains any test methods for OpenHAB and
well-known brand like Amazon Alexa exhibits a maximum
test ratio of 59%.

A majority of our survey participants prefer automated
testing, to try to catch problems early in the development
process to save time and make things more reliable. They
stress the need for consistent, repeatable tests and detailed logs.
But interestingly, some developers still prefer manual testing
as it facilitates human intuition and adaptability for real-world
situations.

Finally, our research identifies challenges in fixing problems
caused by software updates, cross-platform testing, and dealing
with issues in low-power devices — among others. In summary,
our study sheds light on the testing practices, tools, percep-
tions, and challenges for IoT platforms, illustrating promising
pathways for future research to improve testing for this rapidly
growing domain.

[1

—

[2]

[3

[t

[4

=

[6]

[7

—

[8

[t}

[9]
[10]

(1]

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

Anonymous, “Number of internet of things (iot) connected devices
worldwide from 2019 to 2023, with forecasts from 2022 to
2030.” [Online]. Available: https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/

K. Kafle, K. Moran, S. Manandhar, A. Nadkarni, and D. Poshyvanyk,
“A Study of Data Store-based Home Automation,” in Proceedings of
the Ninth ACM Conference on Data and Application Security and
Privacy. Richardson Texas USA: ACM, Mar. 2019, pp. 73-84. [Online].
Auvailable: https://dl.acm.org/doi/10.1145/3292006.330003 1

S. Manandhar, K. Moran, K. Kafle, R. Tang, D. Poshyvanyk, and
A. Nadkarni, “Helion: Enabling a Natural Perspective of Home
Automation,” Jun. 2019, arXiv:1907.00124 [cs]. [Online]. Available:
http://arxiv.org/abs/1907.00124

TechnoGym, “Technogym connected gym equipment.”
Auvailable: https://www.technogym.com/en- US/business/

T. Singh, A. Solanki, S. K. Sharma, A. Nayyar, and A. Paul, “A decade
review on smart cities: Paradigms, challenges and opportunities,” IEEE
Access, vol. 10, pp. 68319-68 364, 2022.

A. Makhshari and A. Mesbah, “IoT Bugs and Development Challenges,”
in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), May 2021, pp. 460-472, iSSN: 1558-1225. [Online].
Auvailable: https://ieeexplore.ieee.org/abstract/document/9402092

F. Corno, L. De Russis, and J. P. SA;enz, “On the challenges novice
programmers experience in developing iot systems: A survey,” Journal
of Systems and Software, vol. 157, p. 110389, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121219301566

F. Corno, L. De Russis, and J. P. Sdenz, “How is open source software
development different in popular iot projects?” IEEE Access, vol. 8, pp.
28337-28 348, 2020.

Anonymous, “openHAB.” [Online]. Available: https://www.openhab.org/!
H. Assistant, “Home Assistant.” [Online]. Available: https://www,
home-assistant.i0/

M. Tufano, S. K. Deng, N. Sundaresan, and A. Svyatkovskiy,
“Methods2Test: A dataset of focal methods mapped to test cases,” in
Proceedings of the 19th International Conference on Mining Software
Repositories, May 2022, pp. 299-303, arXiv:2203.12776 [cs]. [Online].
Available: http://arxiv.org/abs/2203.12776

Anonymous, “Nest App.” [Online]. Available: https://nest.com/app/
Daniel Rodriguez-Cardenas, “Iot testing study online appendix.” [Online].
Auvailable: https://github.com/WM-SEMERU/iot- mining-helion

M. Linares-Vasquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta,
C. Vendome, C. Bernal-Cardenas, and D. Poshyvanyk, “Enabling
Mutation Testing for Android Apps,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, Aug.
2017, pp. 233-244, arXiv:1707.09038 [cs]. [Online]. Available:
http://arxiv.org/abs/1707.09038

A. K. Gomez and S. Bajaj, “Challenges of testing complex internet of
things (iot) devices and systems,” in 2019 11th International Conference
on Knowledge and Systems Engineering (KSE), 2019, pp. 1-4.

S. Bosmans, S. Mercelis, J. Denil, and P. Hellinckx, “Testing
IoT systems using a hybrid simulation based testing approach,”
Computing, vol. 101, no. 7, pp. 857-872, Jul. 2019. [Online]. Available:
https://doi.org/10.1007/s00607-018-0650-5

Anonymous, “Tree-sitter Introduction.” [Online]. Available: https:
/ltree-sitter.github.10/tree-sitter/

Amazon, “Amazon Alexa.” [Online]. Available: https://www.developer
amazon.com/en-US/alexa/

Anonymous, “Homekit.” [Online]. Available: https://www.apple.com/
home-app/

V. Braun and V. Clarke, Thematic Analysis: A Practical Guide. SAGE
Publications, 2021. [Online]. Available: https://books.google.com/books?
id=eMATEAAAQBAJ

A. Ami, K. Moran, D. Poshyvanyk, and A. Nadkarni, ““False negative -
that one is going to kill you” - Understanding Industry Perspectives of
Static Analysis based Security Testing,” in 2024 IEEE Symposium on
Security and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer
Society, may 2024, pp. 23-23.

Z. Wang, W. Wang, Z. Li, L. Wang, C. Yi, X. Xu, L. Cao,
H. Su, S. Chen, and J. Zhou, “Xuat-copilot: Multi-agent collaborative
system for automated user acceptance testing with large language
model,” vol. abs/2401.02705, 2024. [Online]. Available: |https:
//doi.org/10.48550/arXiv.2401.02705

[Online].

11

(23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

T. Martensson, D. Stahl, A. Martini, and J. Bosch, “Chapter 3 efficient
and effective exploratory testing of large-scale software systems,” in
Accelerating Digital Transformation: 10 Years of Software Center.
Springer, 2022, pp. 51-81.

J. Doyle, T. Laurent, and A. Ventresque, “Modelling android applications
through static analysis and systematic exploratory testing,” in /0th
International Conference on Dependable Systems and Their Applications,
DSA 2023, Tokyo, Japan, August 10-11, 2023. 1EEE, 2023, pp. 94-104.
[Online]. Available: https://doi.org/10.1109/DSA59317.2023.00022

R. Coppola, T. Fulcini, L. Ardito, M. Torchiano, and E. Alégroth,
“On effectiveness and efficiency of gamified exploratory GUI testing,”
in TOSEM, vol. 50, no. 2, 2024, pp. 322-337. [Online]. Available:
https://doi.org/10.1109/TSE.2023.3348036

E. H. Halili, “Apache jmeter,” 2008.

Gatling. (2023) gatling: Modern Load Testing as Code. [Online].
Available: https://github.com/gatling/gatling

Blazemeter. (2023) taurus: Automation-friendly framework for
Continuous Testing. [Online]. Available: https://github.com/Blazemeter/
taurus

European Union. (2023) General Data Protection Regulation (GDPR) —
Official Legal Text. [Online]. Available: https://gdpr-info.eu/

C. S. Legislature, “California Privacy Rights Act of 2020
(“CPRA”),” https://leginfo.legislature.ca.gov/faces/codes_displayText
xhtml?division=3.&part=4.&lawCode=CIV &title=1.81.5, 2020.

T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale, “Software
testing: Survey of the industry practices,” in 2018 41st International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), 2018, pp. 1449-1454.

P. S. Kochhar, X. Xia, and D. Lo, “Practitioners’ Views on Good
Software Testing Practices,” in 2019 IEEE/ACM 4lst International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). Montreal, QC, Canada: IEEE, May 2019, pp. 61-70.
[Online]. Available: https://ieeexplore.ieee.org/document/8804445/

M. Linares-Vasquez, C. Bernal-Cardenas, K. Moran, and D. Poshyvanyk,
“How do developers test android applications?” in 2017 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
2017, pp. 613-622.

X. Wang, Y. Sun, S. Nanda, and X. Wang, “Looking from the
mirror: Evaluating iot device security through mobile companion
apps,” in USENIX Security Symposium, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:199523951

G. Fortino, C. Savaglio, G. Spezzano, and M. Zhou, “Internet of things
as system of systems: A review of methodologies, frameworks, platforms,
and tools,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 51, no. 1, pp. 223-236, 2021.

N. Medhat, S. Moussa, N. Badr, and M. F. Tolba, “Testing techniques in
iot-based systems,” in 2019 Ninth International Conference on Intelligent
Computing and Information Systems (ICICIS), 2019, pp. 394-401.

L. Zhang, W. He, O. Morkved, V. Zhao, M. L. Littman, S. Lu,
and B. Ur, “Trace2TAP: Synthesizing Trigger-Action Programs from
Traces of Behavior,” Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., vol. 4, no. 3, pp. 1-26, Sep. 2020. [Online]. Available:
https://dl.acm.org/doi/10.1145/3411838

W. Brackenbury, A. Deora, J. Ritchey, J. Vallee, W. He, G. Wang,
M. L. Littman, and B. Ur, “How Users Interpret Bugs in
Trigger-Action Programming,” in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. Glasgow
Scotland Uk: ACM, May 2019, pp. 1-12. [Online]. Available:
https://dl.acm.org/doi/10.1145/3290605.3300782

G. Reggio, M. Leotta, M. Cerioli, R. Spalazzese, and F. Alkhabbas,
“What are iot systems for real? an experts’ survey on software engineering
aspects,” Internet of Things, vol. 12, p. 100313, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pi1/S254266052030144 X
M. Bures, M. Klima, V. Rechtberger, X. Bellekens, C. Tachtatzis,
R. Atkinson, and B. S. Ahmed, “Interoperability and integration testing
methods for iot systems: A systematic mapping study,” in Software
Engineering and Formal Methods, F. de Boer and A. Cerone, Eds.
Cham: Springer International Publishing, 2020, pp. 93-112.

A. Makhshari and A. Mesbah, “Iot bugs and development challenges,” in
2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 460—472.

U. Inayat, M. F. Zia, S. Mahmood, H. M. Khalid, and M. Benbouzid,
“Learning-based methods for cyber attacks detection in iot systems: A
survey on methods, analysis, and future prospects,” Electronics, vol. 11,

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://dl.acm.org/doi/10.1145/3292006.3300031
http://arxiv.org/abs/1907.00124
https://www.technogym.com/en-US/business/
https://ieeexplore.ieee.org/abstract/document/9402092
https://www.sciencedirect.com/science/article/pii/S0164121219301566
https://www.openhab.org/
https://www.home-assistant.io/
https://www.home-assistant.io/
http://arxiv.org/abs/2203.12776
https://nest.com/app/
https://github.com/WM-SEMERU/iot-mining-helion
http://arxiv.org/abs/1707.09038
https://doi.org/10.1007/s00607-018-0650-5
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://www.developer.amazon.com/en-US/alexa/
https://www.developer.amazon.com/en-US/alexa/
https://www.apple.com/home-app/
https://www.apple.com/home-app/
https://books.google.com/books?id=eMArEAAAQBAJ
https://books.google.com/books?id=eMArEAAAQBAJ
https://doi.org/10.48550/arXiv.2401.02705
https://doi.org/10.48550/arXiv.2401.02705
https://doi.org/10.1109/DSA59317.2023.00022
https://doi.org/10.1109/TSE.2023.3348036
https://github.com/gatling/gatling
https://github.com/Blazemeter/taurus
https://github.com/Blazemeter/taurus
https://gdpr-info.eu/
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://ieeexplore.ieee.org/document/8804445/
https://api.semanticscholar.org/CorpusID:199523951
https://dl.acm.org/doi/10.1145/3411838
https://dl.acm.org/doi/10.1145/3290605.3300782
https://www.sciencedirect.com/science/article/pii/S254266052030144X

[43]

[44]

[45]

[46]

[47]

no. 9, 2022. [Online]. Available: https://www.mdpi.com/2079-9292/11/9/,
1502

X. Feng, X. Zhu, Q.-L. Han, W. Zhou, S. Wen, and Y. Xiang, “Detecting
vulnerability on iot device firmware: A survey,” IEEE/CAA Journal of
Automatica Sinica, vol. 10, no. 1, pp. 25-41, 2023.

X. Jin, S. Manandhar, K. Kafle, Z. Lin, and A. Nadkarni, “Understanding
IoT Security from a Market-Scale Perspective,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security. Los Angeles CA USA: ACM, Nov. 2022, pp. 1615-1629.
[Online]. Available: https://dl.acm.org/do1/10.1145/3548606.3560640

T. A. Ahanger, A. Aljumah, and M. Atiquzzaman, “State-of-
the-art survey of artificial intelligent techniques for iot security,”
Computer Networks, vol. 206, p. 108771, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S 138912862200007X
A. S. Ami, N. Cooper, K. Kafle, K. Moran, D. Poshyvanyk, and
A. Nadkarni, “Why Crypto-detectors Fail: A Systematic Evaluation of
Cryptographic Misuse Detection Techniques,” in 2022 IEEE Symposium
on Security and Privacy (SP), May 2022, pp. 614-631, arXiv:2107.07065
[cs]. [Online]. Available: http://arxiv.org/abs/2107.07065

S. Zhu, S. Yang, X. Gou, Y. Xu, T. Zhang, and Y. Wan, “Survey of Testing
Methods and Testbed Development Concerning Internet of Things,”
Wireless Personal Communications, vol. 123, no. 1, pp. 165-194, Mar.
2022. [Online]. Available: https://doi.org/10.1007/s11277-021-09124-5

12

https://www.mdpi.com/2079-9292/11/9/1502
https://www.mdpi.com/2079-9292/11/9/1502
https://dl.acm.org/doi/10.1145/3548606.3560640
https://www.sciencedirect.com/science/article/pii/S138912862200007X
http://arxiv.org/abs/2107.07065
https://doi.org/10.1007/s11277-021-09124-5

	Introduction
	Background
	Research Questions
	IoT Platform Analysis
	Methodology
	Data extraction
	Automated test identification
	Test analysis
	Manual Analysis

	Results from the Analysis

	IoT Developers' Perspectives on Testing
	Survey Design
	Participant Recruitment
	Ethical Consideration

	Coding and Analysis
	Results from the Analysis of Survey Responses
	Test design and evaluation
	Current testing practices and preferences
	Current challenges and future research scope

	Discussion
	Primary Focus on Unit Testing
	Compatibility Testing and Future Solutions
	Performance Testing and Scalability Challenges
	Improvements in IoT Testing Compliance

	Threats to Validity
	Related Work
	Conclusions
	References

