

CSCI 780: IoT Security

Prof. Adwait Nadkarni

Lecture 3

Motivation

- Many platforms are now programmable
- Developers can use the API to build apps that
 - Get status updates from devices
 - Send commands to devices
 - Interface with other services (SMS, Web Services)
 - Prior work has looked at: devices, the cloud, the OS

Key question: *Is this API secure?*

Motivation

Key question: Is this API secure?

Integrity

Can attackers
manipulate devices?
(e.g., insert lock codes)

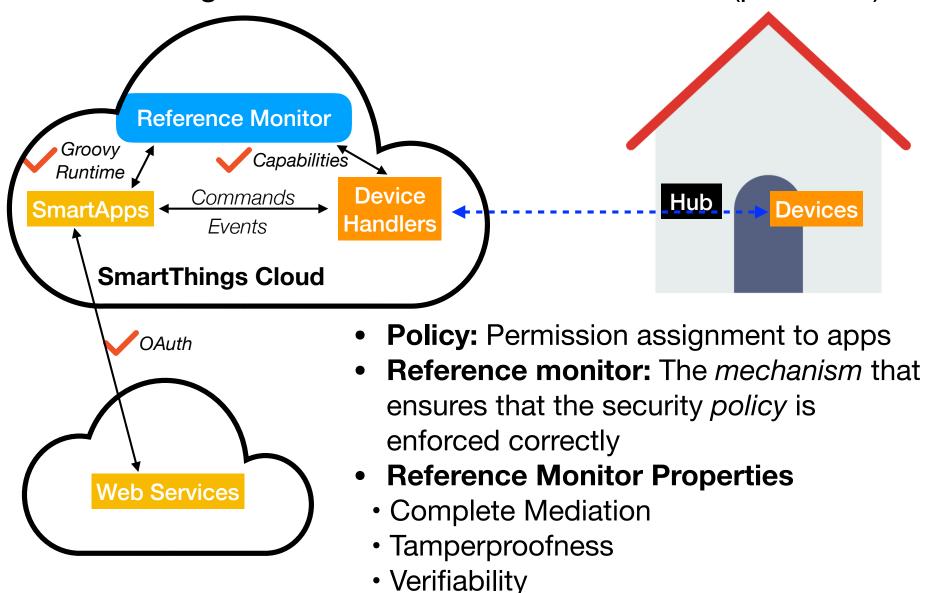
Availability

Can attackers disable devices? (e.g., turn OFF a camera)

Privacy

Can attackers learn private information? (e.g., the user's schedule)

Authenticity


Can attackers spoof messages? (e.g., event spoofing, using stolen OAuth tokens)

Confidentiality

Can attackers learn sensitive information (e.g., lock codes)

Background

SmartThings uses both the hub and the cloud (pre-2019)

Methodology

- Dynamic Testing
- Static Analysis
 - Source code (Groovy SmartApps)
 - Binaries (certain Android apps)
- Network Analysis (mainly to build the dataset)
- Research Questions:
 - How overprivileged are apps?
 - Can events be spoofed?
 - What sensitive information can apps access?
 - How do external third-party integrations affect security?

• ...

Findings

- Overprivilege
- Event injection (i.e., spoofing)
- Event Sniffing
- Vulnerable Third-party integrations

Findings: Overprivilege

Coarse-grained Capabilities

Policy

- App asks for capability "lock"
 - Can read the lock's state, and issue the "lock" and "unlock" commands.
- What if the app only needs to read the lock state?
- Device-granularity binding

Mechanism

 Apps get all capabilities for a device, if they ask for just one.

Which of these is a policy problem, vs a mechanism problem?

Which of these would be harder to fix?

Findings: Event Injection

Dynamic code loading

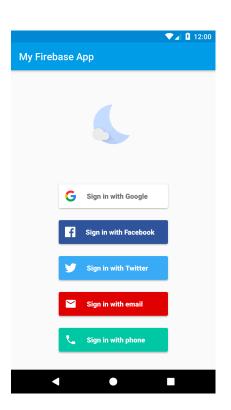
- SmartApps use dynamic method invocation
- Can be exploited to execute any code in the SmartApp's security context (i.e., the capabilities available to the SmartApp)

Event spoofing is trivially possible

- Direct Approach: Spoof an event message, with the
 128 bit ID of the device
- Indirect Approach: Modify the *locationMode*. No access control policy protecting it!

Findings: Sniffing

- A SmartApp can listen to everything from a bound device
 - No access control in place
 - Can subscribe to all events, if binding is established.


- A SmartApp can listen to everything if it knows the 128 bit device ID
 - Even if the device is not bound to the SmartApp

Why is this bad?

How can the adversary get this device ID?

Findings: Vulnerable 3rd Party Integrations

- OAuth tokens can be stolen, or rather, falsely acquired
 - OAuth tokens enable a 3rd-party to connect to the user's SmartThings account.
 - To successfully acquire an OAuth token for a user's SmartThings account, a Web service needs:
 - 1. a client ID
 - 2. a client secret
 - 3. the user to sign in, and redirect a *code* to the Web service.
 - Mobile apps often hardcode the client ID and secret, and reduce the barriers to acquiring a token.

Attack!

- 1. Inject Key Codes!
 - Acquire (Steal) Token + Inject Commands (using capabilities not requested)
- 2. Pin Code Snooping:
 - Acquire device ID or bind to the device (e.g., battery monitor) + register for certain events (e.g., CodeReport)
- 3. Disabling Vacation Mode
- 4. Fake Alarm

Suggestions/Discussion

- Risk-based capabilities would prevent overprivilege.
 - User-studies to quantify risk
- A unified security perspective across platforms (mobile and smart home) to identify the impact of vulnerable integrations
- App Identity to prevent event spoofing
 - cryptographic?
 - Android intents? (i.e., each app has a UID that is carried by its processes)
 - What about spoofing from devices?

Takeaway

- New platforms are very vulnerable
- Third-party integrations may weaken security

Questions!

- 1. How do we make capabilities finer-grained? Is more user-studies the correct approach (i.e., to quantify risk)?
- 2. What are the problems with the device-binding model?
- 3. "Programming frameworks are difficult to change without significant disruption once there is a large set of applications..." —> DISCUSS
- 4. How can we obtain *automation* with *security* (i.e., as security policies may disrupt automation)
- 5. How necessary/useful was the user survey?
- 6. What does this mean for the apps we use?