
CSCI 667:
Concepts of Computer

Security

Lecture 25

Prof. Adwait Nadkarni

1
Derived from slides by Dmitry Evtyushkin

Trusted Processes

•Does it matter if we do not trust
some of J’s processes?

• Trojan Horse: Attacker
controlled code run by J can
violate secrecy.

• Confused Deputy: Attacker may
trick trusted code to violate
integrity

2

O1 O2 O3

J R RW RW

S2 - R RW

S3 - R RW

Bell-LaPadula (BLP) Model
• A Confidentiality MLS policy that enforces:
• Simple Security Policy: a subject at specific classification level cannot

read data with a higher classification level. This is short hand for
“no read up”.

• * (star) Property: also known as the confinement property, states
that subject at a specific classification cannot write data to a lower
classification level. This is shorthand for “no write down”.

3

Two ways to enforce IFC

4

• Explicit flows: Predict data flows, enforce rules
• Incompatible with dynamic user-directed

sharing!

P Q

{LP} {LQ}
X

A. Explicit labels

B. Floating labels

P Q
{LP} {LQ}{LPLQ}
P Q

{LP} {LQ} --> {LPLQ}

• Floating labels (i.e., taint tracking):
– Labels follow data
– Seamless communication

//'a' contains a secret
a = some_secret;
c = null;
b+=a;

//’b’ is tainted as well

Side Channels

5

A simple implicit flow

• Problem:

• ‘a’ leaks implicitly
• i.e., because of a condition

6

//'a' contains a secret
b = false;
if (a == 0) {

b = true;
}

• Solution?
• If a condition depends on ‘a’

• Propagate labels to all the
assignments resulting from it

• i.e., ‘b’ gets the ‘secret’ label

A slightly more complex
implicit flow

7

//a is secret
b := c := false
if ~a then c := true
if ~c then b:=true

Denning, 1976

Krohn & Tromer, 2009

7

P

0 1

{L1}

Q

{}
Q2

{}

Q1

{}

Attack SetupStep 1. P calls Q1Step 2. Q2 calls QStep 3. Q guesses data ‘0 1’

0 1

{L1}
1
2
3

aà b without label
propagation: because
either c:=true or b:=true
were not executed Attack Setup:

• P sends a message to Qi if the ith bit is ‘0’
• All the Qis send Q a message at a fixed

time interval, unless they have received a
message from P

Traditionally

8

Fabrication
(Threat)

Authenticity
(Policy)

MAC
(Mechanism)

Modification
(Threat)

Interception
(Threat)

BobAlice
Mallory

COMMUNICATION CHANNEL

Attacks

Confidentiality
(Policy)

Encryption
(Mechanism)

Integrity
(Policy)

Hash
(Mechanism)

Meta Policy
• Confidentiality
• Integrity
• Authenticity

In practice

9

Assumptions
- Only Alice Knows Ka
- Only Bob Knows Kb
- Mallory has access to E, D and the Communication Channel but
does not know the decryption key Kb

E

Ka

D

Kb

Communication
ChannelMessage Message

leaked Information

Mallory

Alice
Bob

Side Channels in the real world
Through which a cryptographic module leaks
information to its environment unintentionally

General Idea
• Traditionally it was assumed that data is safe as long as strong

crypto is used, however…
• Cryptographic algorithms allow multiple correct

implementations (data structures are not specified, etc.)
• Performance of crypto operations can be dependent on secret

data (timing attack)
• E.g. due to CPU caches

• Cryptographic operations can leave traces in shared resources

10

What all leaks information?:
Sources of side-channels

11

E/D

K

Real World System

Protocols

HardwareHuman User
Software

Deployment
& Usage

• Key dependent
Variations

computation time

• Power consumption
• EM Radiations

Traditionally we have
handled only

Cryptographic Algorithms

Typical Attack model

12

Mallory

E

D

K

K

Text to encrypt

Side channel data

Ciphertext

Side channel data

Data can include:
• Timings
• Power consumption
• Heat, EM emission
• Architectural events
• Others

13

Timing Attacks Against RSA

•Recovers the private key from the running time of the
decryption algorithm

•Computing m = cd mod n using repeated
squaring algorithm:

• m = 1;
• for i = k-1 downto 1

m = m*m mod n;
if di == 1

then m = m*c mod n;
• return m;

Example: Power Analysis

14

Idea: During switching, CMOS gates draw spiked current

Trace of Current drawn - RSA Secret Key Computation

Only Squaring Squaring and multiplication

Result: Many smart cards leak secret keys

A simple timing attack example

15

Side vs Covert Channels
• Both are based on extracting information from

media not designed for it
• Side channels: Spying on program activity using side

effects of its execution
• Finding if someone’s home by looking at their lights
• Q: How to find out if car was driven or not an hour ago?

• Covert channel: Intentionally communicating using
execution artefacts
• Prisoners communicating by banging on pipes
• Q: How to send a secret message (e.g. number) to your

friend if you are only allowed to send empty emails?
16

Side and Covert Channel Attacks
through Shared Hardware

• Shared hardware resources e.g. CPU caches can leak
sensitive data (Side Channel Attack)

• Malicious entities transfer information by
manipulations with shared resource (Covert
Channel)

17

Why is this important?
• Completely stealthy, passive attacks
• Do not require crashing program (unlike memory corruption

attacks)
• Often completely unnoticeable

• Many side channels require physical access
• The spy has to be able to measure

• Today: Architecture based side channels
• Victim and spy run on the same system
• Often not a problem with prevalence of Cloud Computing, JIT

compiled 3rd party scripts, etc.

• Spy uses the shared architecture components as a side
channel

18

Why is this important?
• Completely stealthy, passive attacks
• Do not require crashing program (unlike memory corruption

attacks)
• Often completely unnoticeable

• Many side channels require physical access
• The spy has to be able to measure

• Today: Architecture based side channels
• Victim and spy run on the same system
• Often not a problem with prevalence of Cloud Computing, JIT

compiled 3rd party scripts, etc.

• Spy uses the shared architecture components as a side
channel

19

What is the fundamental reason
why side-channels exist?

Problem: Resource Sharing
• Trusted and Untrusted code execute on same

hardware using same resources

20

Attacker: Virtual
machine
Victim: Virtual
machine

Attacker: Unprivileged
process
Victim: Privileged process

Attacker: Javascript
code
Victim: Browser
process with access
to stored passwords

Attacker Presence
• Remote – attacker located over network
• Near the machine – attacker in physical proximity, is

able to monitor “whole system” side channels, e.g. EM-
emission

• Another CPU – On multi-socket machine, attacker
runs on another physical CPU to victim

• Another Core – Same physical CPU, but different core
• Another Hyperthread – Same core, different virtual

core
• Same Context – e.g. sandboxed code within trusted

process

•
21

Microarchitectural Side
Channels

• Modern processors
support multiple programs
running at the same time
• On same core or on

different cores
• Many shared resources
• What one process

does can affect
others

• Q: Examples?
22

Desired Properties
• What makes a good side

channel?

23

• The behaviour is
observable by the
attacker and depends on
the victim’s sensitive
data
• The observations (and

behaviour) are
deterministic.

Broad types of resource sharing
• Contention based: A can see resource has been used by B, e.g.,

cache
• Data (state) reuse based: data loaded by A is used by B, e.g.,

branch predictor

24

Shared Between
Cores

Shared
Hyperthreads

Contention
Channel

Data (State)
Reuse Channel

Local Caches
(L1 & L2)

No Yes Yes No

Last Level
Cache (L3)

Yes Yes Yes No

Branch
Predictor

No Yes Yes Yes

Prefetchers No Yes Yes Yes?

Execution Units No Yes Yes No

The x86 cache

25

• Memory is slower than the
processor

• The cache utilizes locality to
bridge the gap
• Divides memory into lines
• Stores recently used lines

• Shared caches improve
performance for multi-core
processors

Processor

Memory

Cache

Types of interference

26

• If data is shared
• Data loads

performed by A will
be visible to B
• Removing data from

cache by A will affect
execution time of B

• If data is not shared
• Cache is still shared,

thus activity of A can
evict data placed by
B, affecting B’s
execution time

• Assume process A and process B execute on a single
core and share caches

Shared data/code between
victim and attacker? 🤔

• Very common!
• E.g. different programs

use same libraries (both
code and read only
data)
• OS/VMM tries to save

physical memory my
doing memory
deduplication

• As a result:
• Encrypt/Decrypt

operation code is shared
(RSA side channel)
• Precomputed lookup

tables (AES side
channel)

27

Shared Data Attack

28

8-way set-associative cache
way 0 way 7

Alice Mallory

t1:s1

t bits s bits b bits

0m-1

<tag> <set index> <block offset>

Address:

load: t1:s1
LONG
load: t1:s1
SHORT

t1 s1

load: t1:s1

Cache Consistency
• Memory and cache can be

in inconsistent states
• Rare, but possible

• Solution: Flushing the cache
contents
• Ensures that the next load is

served from the memory

• CLFLUSH instruction
• The invalidation is broadcast

throughout the cache
coherence domain

29

Processor

Memory

Cache

The Flush + Reload
Technique

• Exploits cache behavior to leak information on victim
access to shared memory.
• Shared text segments

• Shared libraries
• Memory de-duplication

• Spy monitors victim’s access to shared code
• Spy can determine what victim does
• Spy can infer the data the victim operates on

30

FLUSH+RELOAD
•FLUSH memory line
•Wait a bit

•Measure time to
RELOAD line
•slow-> no access

• fast-> access

•Repeat

31

Processor

Memory

Cache

