
Speculative Execution
Attacks

Background Branch Instructions

● Branch instructions
○ Instructions that change the flow of execution
○ Call, return, if, while, for, goto

● Branch Instructions require time to decode
● Conditional Branches

○ May or may not be taken
○ If, while

● Unconditional Branches
○ Will be taken
○ Call, return, goto

Background Branch Predictors

Branch Predictors predict:

1. Where execution will go (target address)
2. Whether a branch (conditional) will be

taken

BPs use history to determine prediction

Basic 2 bit branch predictor
Dynamically update prediction

Bit 1 - 0 Bit 1 - 1

Bit 2 - 0 Not taken Not taken

Bit 2 - 1 Taken Taken

Background: Misprediction?

What happens after a branch prediction is made?

Run in “Speculative Execution”

1. Save state of processor (registers, data, stack point, instruction point)
2. Then run in speculative execution
3. If prediction is correct - Continue execution
4. Otherwise reset state of processor before misprediction

Mispredictions are costly as they reset the microarchitectural state

But not completely…

Meltdown

Spectre V1

Takes advantage of out of order checks

In speculative execution processor waits to
perform authorization check until after
speculative execution window

Allows attackers to read data they do not
have access to (loads into cache)

Once data is in cache perform a cache side
channel attack to read the data

Spectre v2

1. Attacker mistrains branch target
a. Allows attacker to point branch at their code
b. Attacker sets a “payload”

2. Victim runs program
3. Branch predictor mispredicts branch and execution starts at payload
4. Data from payload is loaded into cache
5. Attacker performs cache side channel to read data

Impact

Protections

● Meltdown is fixed with simple software update
● Spectre v1 and v2 are more difficult to protect against
● Protections are costly (worse performance)
● AMD recently released update (March 12th, 2022 to help protect against

Spectre v2 attacks)

STBPU

Motivation and Idea

● Software fixes have significant performance costs
● Current fixes are targeting results of a problem not the root of the problem

itself
● Want to make a branch predictor unit (BPU) that is secure and prevents

programs from interfering with each other
● Use secret tokens to to prevent branches from interfering with each other

STBPU Threat Model

● Powerful attack, complete understanding of underlying hardware
● Cannot access ST

○ Stored in speical register that requires privileged mode to read
○ When stored by system software, it can only be read when complete system

compromise
■ In this case attacker has no need for side channels
■ Bigger problems

● Spectre v1 not in scope, Spectre v2 is in scope
○ Different problems to fix each, require different fixes

● Two models
○ Sensitive Process as a victim
○ Kernel as the victim

STBPU Design: Secret Tokens

● Each process has a secret token (ST)
● STs are used in two places

○ Firstly to encrypt (and decrypt) entries in the BPU table
○ Secondly to be added to remapping functions to make them dependent on the ST

● Normal BPU
○ Uses a remapping function to look inside their lookup table to get prediction
○ Then sends prediction (both if taken and target address)

● STBPU
○ Remapping lookup is dependent on ST
○ Prediction result is encrypted with ST

STBPU: Security Evaluation

● In STBPU if attacker mistrains a branch
○ Victim runs that branch it will map to a different place in prediction table
○ Each process (victim and attacker) will have a different ST that maps to a different location in

BPU
● In STBPU if attacker manages to have a branch collision (same place in

lookup table)
○ Decoded branch will be different as each branch target is encrypted with ST of that process

ST Rerandomization

● Even with ST attacker can brute force to find ST
● OS keeps track of mispredictions and eviction from BPU. After a certain

amount the OS gives new STs to all processes
○ Note information encoded in branch predictor (ie target addresses that are encrypted) are not

reencoded
○ They will remain with previous encryption, however if we try to decrypt it, it will be with new ST

so result will be different
● Too frequent rerandomization can affect performance
● Too infrequent rerandomization can harm security

Performance Evaluation

Trace testing to test against other models of secure BPUs

Used Gem5 to perform testing of STBPU model

● Evaluated STBPU implementation on 4 BPUs
○ Basic Branch Predictor
○ Perceptron Branch Predictor
○ TAGE Branch Predictor 8KB
○ TAGE Branch Predictor 64KB

● Used branch prediction accuracy and IPC (instructions per cycle) to measure
performance vs baseline models

Accuracy vs Secure BPU Models

● STBPU - 99% accuracy
● Conservative - 88%
● Ucode - 77%
● Ucode2 - 82%

Gem5b IPC

Threshold Randomization Testing

Image Sources

https://meltdownattack.com/

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9407076

https://spectrum.ieee.org/how-the-spectre-and-meltdown-hacks-really-worked

https://meltdownattack.com/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9407076
https://spectrum.ieee.org/how-the-spectre-and-meltdown-hacks-really-worked

