Speculative Execution
Attacks

Background Branch Instructions

e Branch instructions

o Instructions that change the flow of execution
o Call, return, if, while, for, goto

e Branch Instructions require time to decode

e Conditional Branches

string inputString;
o May or may not be taken

o If. while cout << "Enter student names (max of 50). Enter g to quit" << endl;
e Unconditional Branches int count = o;
bool continueInput = true;

o Will be taken

o CaII, return, goto while (count ++ < 50 && continuelnput)

{
cout << "Name: "“;
cin >> inputString;
if (inputString == "g")
continueInput = false;

Background Branch Predictors

Branch Predictors predict:

1. Where execution will go (target address)
2. Whether a branch (conditional) will be
taken

BPs use history to determine prediction

Basic 2 bit branch predictor
Dynamically update prediction

Bit1-0 Bit 1 -1
Bit2-0 Not taken Not taken
Bit 2 - 1 Taken Taken

Clock cycle

1
Waiting - -
instructions . . .
[NEN
, Stage 1; Fetch &D-..@&&g
__g_ Stage 2: Decode &g[’...&&g
é_ Stage 3: Execute &&&D...&ﬁ
Stage 4: Write-bac & & & & ,:I . . . x
CE NN
Completed I:l . .
instructions D .
[

not taken

Background: Misprediction?

What happens after a branch prediction is made?

Run in “Speculative Execution”

Save state of processor (registers, data, stack point, instruction point)
Then run in speculative execution

If prediction is correct - Continue execution

Otherwise reset state of processor before misprediction

LN~

Mispredictions are costly as they reset the microarchitectural state

But not completely...

=

Spectre Meltdown

Meltdown

MELTDOWN

Logically, reading from memory should work like this:

Does the application have permission to
read from this address?

Yes No

Read from
memory

+ Raise an
Reportresults

“exception”

But to save time,

Intel processors Read frommemory

execute these
steps out of order.

Doesthe application have permission to
read from this address?

No

Raise an

“exception”

Meltdown

Meltdown

By masking exceptions and using a side channel that
Reportresults times how long it takes to read from memory, Meltdown

can steal secret data.

Spectre V1 _

y

Takes advantage of out of order checks

In speculative execution processor waits to
perform authorization check until after
speculative execution window

Allows attackers to read data they do not
have access to (loads into cache)

Once data is in cache perform a cache side
channel attack to read the data

if (x < arrayl _size)
array2[arrayl[x] * 256];

[Mistrain predictor] [Flush Array_A] Setup
Conditional/Indirect Delayed
Branch Instruction Authorization
"""""""""""""""""""" i "w"_:":h:"_""\".iﬁééﬁié{i}?"""m""'
f window
| (Lmid S J1 Secret access
|
I [Compute load address R] I Use Secret and
I l | Send Secret
[Load R to Cache]]
N = - e W
Authorization Squash or
Resolved | Commict Receive Secret
Branch resolution:
correct flow Reload Array_A

!

Y

l Measure time l

Spectre v2

1.

o~ wb

Attacker mistrains branch target

a. Allows attacker to point branch at their code
b. Attacker sets a “payload”

Victim runs program

Branch predictor mispredicts branch and execution starts at payload
Data from payload is loaded into cache

Attacker performs cache side channel to read data

Impact

Architecture

Entry

Method

Impact

Action

MELTDOWN

Intel, Apple

Must have code
execution on the system

Intel Privilege Escalation +
Speculative Execution

Read kernel memory
from user space

Software patching

Daniel Miessler 2018

SPECTRE

Intel, Apple, ARM, AMD

Must have code
execution on the system

Branch prediction +
Speculative Execution

Read contents of memory from
other users’ running programs

Software patching
(more nuanced)

Protections

Meltdown is fixed with simple software update

Spectre v1 and v2 are more difficult to protect against

Protections are costly (worse performance)

AMD recently released update (March 12th, 2022 to help protect against
Spectre v2 attacks)

STBPU

Motivation and Idea

e Software fixes have significant performance costs

e Current fixes are targeting results of a problem not the root of the problem
itself

e \Want to make a branch predictor unit (BPU) that is secure and prevents
programs from interfering with each other

e Use secret tokens to to prevent branches from interfering with each other

STBPU Threat Model

e Powerful attack, complete understanding of underlying hardware

e Cannot access ST

o Stored in speical register that requires privileged mode to read
o When stored by system software, it can only be read when complete system
compromise
m In this case attacker has no need for side channels
m Bigger problems

e Spectre v1 not in scope, Spectre v2 is in scope
o Different problems to fix each, require different fixes
e Two models

o Sensitive Process as a victim
o Kernel as the victim

A

Return call } ret}

RSB
1 . dir. jump/call

STBPU Design: Secret Tokens }

D~ire‘ct jump/call r":_} e § target pred
e Each process has a secret token (ST) =

e STs are used in two places T =" .
p ik PHT [@]encryption
o Firstly to encrypt (and decrypt) entries in the BPU table GHR 2l @remapping

o Secondly to be added to remapping functions to make them dependent on the ST
e Normal BPU

o Uses a remapping function to look inside their lookup table to get prediction
o Then sends prediction (both if taken and target address)

e STBPU

: . 80 bits 40 bits 40 bits i 40 bit
o Remapping lookup is dependenton ST " o Pots Adbls, Qb
. . . @ \,
o Prediction result is encrypted with ST @ Sbox N /fSbox | P —[Sbox | -CS|
4~ Sbox |~y Sbox | .| Pbox -~ Sbox _.CS 22 bits
S llll.'"_‘.\»l-ll LI B LN
~ ~ Sbox | / SN w«Sbox —" @ — . Sbox |—[C-5
a)
- Sbox |’ % S box - P-box -| Sbox |—=|C-S
....... P N Sy - Tyt . A
s X0123456789ABCDEF'
/PRESENT SIXIC56BO0AD3EFB4712, 6——0—0—0;)—&?—6
S box<’ o PboX—— A5 N
4 -4 “SPONGENT ~701734567B0ABCOER, nwn e —es v oy
B ~S[EDB0214F7A859C36,

STBPU: Security Evaluation

e In STBPU if attacker mistrains a branch

o Victim runs that branch it will map to a different place in prediction table
o Each process (victim and attacker) will have a different ST that maps to a different location in

BPU
e In STBPU if attacker manages to have a branch collision (same place in
lookup table)
o Decoded branch will be different as each branch target is encrypted with ST of that process

Baseline input STBPU input Output Function

[32 s 32,48 s 9 ind, 8 tag, 5 offs| R; (80 — 22)

58 BHB 32 %), 58 BHB 8 tag R2(90 +— 8)

32 s 32 ¢, 48 s 14 ind R3(80 — 14)

18 GHR, 32 s |32 9, 16 GHR, 48 s 14 ind R4(96 — 14)

[t] [48 s, L (GHR) |32 1), 48 s, L (GHR) | 10/13 ind, 8/12 tag |R:(801 — 25)

[P] 48 s 32,48 s 10 ind R¢(80 — 10)
L (GHR) — represents geometric series of global history lengths

s — represents the source bits of branch instructions

ST Rerandomization

e Even with ST attacker can brute force to find ST
e OS keeps track of mispredictions and eviction from BPU. After a certain

amount the OS gives new STs to all processes
o Note information encoded in branch predictor (ie target addresses that are encrypted) are not

reencoded
o They will remain with previous encryption, however if we try to decrypt it, it will be with new ST

so result will be different
e Too frequent rerandomization can affect performance

e Too infrequent rerandomization can harm security

Performance Evaluation

Trace testing to test against other models of secure BPUs
Used Gemb3 to perform testing of STBPU model
e Evaluated STBPU implementation on 4 BPUs

o Basic Branch Predictor

o Perceptron Branch Predictor
o TAGE Branch Predictor 8KB
o TAGE Branch Predictor 64KB

e Used branch prediction accuracy and IPC (instructions per cycle) to measure
performance vs baseline models

Accuracy vs Secure BPU Models

STBPU - 99% accuracy S
Conservative - 88% oo Joh Fdl | il |l - |
Ucode - 77%

Ucode2 - 82%

S50

average pcode protection —-= average conservative average STBPU [ucode protection2 ~ EEE pcode protection [conservative [0 STBPU

>‘ J
g.g 1.0 = - = = = [x = = [a
ol Sl 10 el A ool -1 ool il -] -
82 sl = T [N I o i
)
25 0.6
24
o N
9T 0.4
>E
)
O co0.2- R T S S o e & s ® 0 oL ad R . ¢ ef (02 c0° 0% <Q° ~Q0°

oo r PR W& e‘—Q 6 ¢ ,o((\ o g\" 20 @ el & °<<\ »‘* {L 1,‘) (,’5 f,\ AR 3(e‘e Q% 0% 05 O 30

Qe;\"e 6°1°3b o8 Ta® ° ‘;'\Q'Q o 'L\’a\a“ 5’1‘) 6\3\2 <)’):\ < L eQ‘“\ AT *(,\\"’“ & a2 KO‘* ('&0(\‘5' eﬁo“‘“ @*5 exo‘\" <<‘°’\ s 0‘\0 060 '1,%"0“5(7‘0“ q® 6""’0“ 287
o ? oo & ° = o¥> = Pl o8 Py Q’L/@‘\e 5 ~<@,’LS} &e\\e‘;(@e:;\e‘x«\ A8 *P& \PQ/ \‘s&’\p&’ &
s Qc“ Q O & (O N@“‘ e

TG gt

oo ©
<N o

Normalized IPC
over unprotected designs

Gembb IPC

avg-norm-ST_PerceptronBP —:~ avg-norm-ST_TAGE_SC_L_64KB [norm-ST_PerceptronBP I norm-ST_TAGE_SC_L_64KB

----- avg-norm-ST_SKLCond avg-norm-ST_TAGE_SC_L_8KB El norm-ST_SKLCond [norm-ST_TAGE_SC_L_8KB
e 5 9 \J
o s d _ s R
1.066
1.05 A
1.00 -
0.95 ~1
0.90 A1
08378 o- '1, > o 2\ ° > > - R o & - > < v &
o (2 0 2 < C N e +
&0 + oog f;\é\ <°<° < ® @‘0 &’@ ('9@ & 4{5\ . O & & v
& & & & ¢ N S
et S +°

Threshold Randomization Testing

¥ avg-all-reduction-ST_TAGE_SC_L_64KS | - avg—all-redu(uonAST_TAGE_SC_L_Glﬂ(B]

0.20

o
'S

0.15+

=4
w

0.10-

o
N

°
=

0.05

Reduction of Target Prediction Rate
comparing to unprotected designs

Reduction of Direction Prediction Rate
comparing to unprotected designs

‘)‘o‘o °> ‘7%")@‘0‘\, ‘\b °) ")bn‘)") ‘o‘b‘o%‘o‘\,
PR DIP LS '\oevaqo 00 ‘\, ’1»0")0&0‘9 60’\0%0‘30
_0_000 QQQQQQO (QAOASIEOAEOAV)
PO PASNDAS 090 ,000. Qng QQQQQQQQQQQQQQQQQQQQQQ

D¢ avg-alI-norm-ST_TAGE_SC_L_64KBJ

il

hVa 5N 5 5N 5N 5N 5N A2 A2 5 5N

Normalized IPC
over unprotected designs

Image Sources

https://meltdownattack.com/

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9407076

https://spectrum.ieee.org/how-the-spectre-and-meltdown-hacks-really-worked

https://meltdownattack.com/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9407076
https://spectrum.ieee.org/how-the-spectre-and-meltdown-hacks-really-worked

