
CSCI 667:
Concepts of Computer

Security

Prof. Adwait Nadkarni

1Derived from slides by William Enck, Micah Sherr, and Patrick McDaniel

Network Intrusion
Detection Systems

(NIDS)

Intrusion Detection Systems

• Authorized eavesdropper that listens in on network
traffic

• Makes determination whether traffic contains
malware

• usually compares payload to virus/worm signatures

• usually looks at only incoming traffic

• If malware is detected, IDS somehow raises an alert

• Intrusion detection is a classification problem

3

Example Setup

4

Detection via Signatures

5

• Signature checking

• does packet match some signature

• suspicious headers

• suspicious payload (e.g., shellcode)

• great at matching known signatures

• Low false positive rate: Q: WHY?
• Problem: not so great for zero-day attacks --

Q: WHY?

Anomaly Detection

6

• Learn what ”normal” looks like.

• Frequently uses ML techniques to identify malware

• Underlying assumption: malware will look different from non-
malware

• Supervised learning

• IDS requires learning phase in which operator provides pre-
classified training data to learn patterns

• {good, 80, “GET”, “/”, “Firefox”}

• {bad, 80, “POST”, “/php-shell.php?cmd=’rm -rf /’”, “Evil Browser”}

• ML technique builds model for classifying never-before-seen packets

• Problem: False Learning

• Problem: is new malware going to look like training malware?

Confusion Matrix
•What constitutes an

intrusion/anomaly is really
just a matter of definition

•A system can exhibit all
sorts of behavior

• Quality determined by the
consistency with a given
definition

•Context-sensitive (i.e.,
what is “positive/true”?)

A
b
n
o
rm
a
lN

o
rm
a
l

Legal

Metrics

• True positives (TP): number of correct classifications
of malware

• True negatives (TN): number of correct classifications
of non-malware

• False positives (FP): number of incorrect classifications
of non-malware as malware

• False negatives (FN): number of incorrect
classifications of malware as non-malware

8

Metrics
(from perspective of detector)

• False positive rate:

• True negative rate:

• False negative rate:

• True positive rate:

TPR = 1� FNR =
TP

FN + TP
=

malicious correctly marked

total malicious

FPR =
FP

FP + TN
=

benign marked as malicious

total benign

FNR =
FN

FN + TP
=

malicious not marked

total malicious

TNR = 1� FPR =
TN

FP + TN
=

benign unmarked

total benign

Base Rate Fallacy

11

• Occurs when we assess P(X|Y) without considering prior
probability of X and the total probability of Y

• Example:

• Base rate of malware is 1 packet in a 10,000

• Intrusion detection system is 99% accurate (given known
samples)

• 1% false positive rate (benign marked as malicious 1% of
the time)

• 1% false negative rate (malicious marked as benign 1% of
the time)

• Packet X is marked by the NIDS as malware. What is the
probability that packet X actually is malware?

• Let’s call this the “true alarm rate,” because it is the rate at
which the raised alarm is actually true.

Bayes’ Rule
• Pr(x) function, probability of event x
• Pr(sunny) = .8 (80% of sunny day)

• Pr(x|y), probability of x given y
• Conditional probability
• Pr(cavity|toothache) = .6

•60% chance of cavity given you have a
toothache

• Bayes’ Rule (of conditional probability)

• Assume: Pr(cavity) = .5, Pr(toothache) = .1
• What is Pr(toothache|cavity)?

Pr(B|A) =
Pr(A|B) · Pr(B)

Pr(A)

=
TP

FN + TP
= TPR

Pr(MarkedAsMalware|IsMalware)

=
malicious correctly marked

total malicious

Base Rate Fallacy

13

• How do we find the true alarm rate? [i.e., Pr(IsMalware|MarkedAsMalware)]

• We know:

• 1% false positive rate (benign marked as malicious 1% of the time); TNR= 99%

• 1% false negative rate (malicious marked as benign 1% of the time); TPR= 99%

• Base rate of malware is 1 packet in 10,000

• What is?

• Pr(MarkedAsMalware|IsMalware) = ?

• Pr(IsMalware) = ?

• Pr(MarkedAsMalware) = ?

Pr(IsMalware|MarkedAsMalware) =
Pr(MarkedAsMalware|IsMalware) · Pr(IsMalware)

Pr(MarkedAsMalware)

TPR = 0.99
Base rate = 0.0001

Base Rate Fallacy

14

• How do we find Pr(MarkedAsMalware)?

• So what is?

• Pr(IsMalware) = base rate = 0.0001

• Pr(IsNotMalware) = ?

• Pr(MarkedAsMalware|IsMalware) = TPR = 0.99

• Pr(MarkedAsMalware|IsNotMalware) = ?

• So Pr(MarkedAsMalware) = 0.99 * 0.0001 + 0.01 * 0.9999 ~= 0.01

FPR = 0.01

1 – Pr(IsMalware) = 0.999

= Pr(MarkedAsMalware|IsMalware)Pr(IsMalware) + Pr(MarkedAsMalware|IsNotMalware)Pr(IsNotMalware)

Pr(A|!B) = 1 - Pr(!A|!B)
Pr(A|B) = 1 - Pr(!A|B)

Pr(MarkedAsMalware|IsNotMalware)

=
benign marked as malicious

total benign

=
FP

FP + TN
= FPR

Base Rate Fallacy

15

• How do we find the true alarm rate? [i.e., Pr(IsMalware|MarkedAsMalware)]

• Therefore only about 1% of alarms are actually malware!

• What does this mean for network administrators?

Pr(IsMalware|MarkedAsMalware) =
Pr(MarkedAsMalware|IsMalware) · Pr(IsMalware)

Pr(MarkedAsMalware)

=
0.99 · 0.0001

0.01
= 0.0099

Base Rate Fallacy
(summary)

• Let Pr(M) be the probability that a packet is actually
malware (the base rate)
• Let Pr(A) be the probability that that the IDS raises an

alarm (unknown)
• Assume we also know for the IDS
• Pr(A|M) = TPR = 1 - FNR
• Pr(A|!M) = FPR

• Then the true alarm rate is

• Note the strong influence of Pr(M)

Pr(M |A) =
Pr(A|M) · Pr(M)

Pr(A|M) · Pr(M) + Pr(A|!M) · Pr(!M)

Where is Anomaly Detection Useful?

1
7

System Intrusion Density
P(M)

Detector Alarm
Pr(A)

Detector Accuracy
Pr(A|M)

True Alarm Rate
P(M|A)

A 0.1 0.65

B 0.001 0.99

C 0.1 0.99

D 0.00001 0.99999

Pr(B|A) = Pr(A|B) Pr(B)
Pr(A)

Where is Anomaly Detection Useful?

1
8

System Intrusion Density
P(M)

Detector Alarm
Pr(A)

Detector Accuracy
Pr(A|M)

True Alarm Rate
P(M|A)

A 0.1 0.38 0.65 0.171

B 0.001 0.01098 0.99 0.090164

C 0.1 0.108 0.99 0.911667

D 0.00001 0.00002 0.99999 0.5

Pr(B|A) = Pr(A|B) Pr(B)
Pr(A)

Base-rate Fallacy in the real
world

19

The ROC curve
• Receiver Operating Characteristic (ROC)
• Curve that shows that detection/false positive ratio

(for a binary classifier system as its discrimination threshold is varied)

• Axelsson talks about the real problem with some authority
and shows how this is not unique to CS
• Medical, criminology (think super-bowl), financial

Ideal

20

Example ROC Curve
• You are told to design an intrusion detection algorithm that identifies

vulnerabilities by solely looking at transaction length, i.e., the algorithm
uses a packet length threshold T that determines when a packet is
marked as an attack (i.e., less than or equal to length T). More formally,
the algorithm is defined:

• where k is the packet length of a suspect packet in bytes, T is the length
threshold, and (0,1) indicate that packet should or should not be
marked as an attack, respectively. You are given the following data to
use to design the algorithm.

attack packet lengths: 1, 1, 2, 3, 5, 8

non-attack packet lengths: 2, 2, 4, 6, 6, 7, 8, 9

• Draw the ROC curve.

2
1

Solution

2
2

attack packet lengths: 1, 1, 2, 3, 5, 8

non-attack packet lengths: 2, 2, 4, 6, 6, 7, 8, 9

Problems with IDSes

23

• VERY difficult to get both good recall and precision

• Malware comes in small packages

• Looking for one packet in a million (billion?
trillion?)

• If insufficiently sensitive, IDS will miss this packet
(low recall)

• If overly sensitive, too many alerts will be raised
(low precision)

Snort

24

• Open source IDS

• Signature detection

• Lots of available rulesets

• alert tcp $EXTERNAL_NET any -> $SQL_SERVERS 3306
(msg:"MYSQL root login attempt"; flow:to_server,established;
content:"|0A 00 00 01 85 04 00 00 80|root|00|";
classtype:protocol-command-decode; sid:1775; rev:2;)
• alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS

$HTTP_PORTS (msg:"WEB-PHP Setup.php access";
flow:to_server,established; uricontent:"/Setup.php"; nocase;
reference:bugtraq,9057; classtype:web-application-activity;
sid:2281; rev:2;)

Defenses thus far

• Firewalls and Intrusion Prevention
Systems prevent malicious packets from
entering the network (in theory)

• Intrusion Detection Systems alert
network administrators to intrusion attempts

• Both systems work best when malware is well-
understood and easily fingerprinted

25

How do we learn about
and study malware?

2
6

Honeypots
• Honeypot: a controlled

environment constructed to
trick malware into thinking it is
running in an unprotected
system

• collection of decoy services
(fake mail, web, ftp, etc.)

• decoys often mimic behavior
of unpatched and vulnerable
services

27

Honeypots
• Three main uses:

• forensic analysis: better understand how malware works; collect
evidence for future legal proceedings

• risk mitigation:

• provide “low-hanging fruit” to distract attacker while
safeguarding the actually important services

• tarpits: provide very slow service to slow down the attacker

• malware detection: examine behavior of incoming request in
order to classify it as benign or malicious

28

Honeypots
• Two main types:

• Low-interaction: emulated services

• inexpensive

• may be easier to detect

• High-interaction: no emulation; honeypot maintained
inside of real OS

• expensive

• good realism

29

Example Honeypot Workflow

3
0

Start

Create
honeypot
services

Malware
attacks service

Honeypot
mimics vulnerable
service

Analyst
inspects
malware

Reset
honeypot

31

• Trace system calls:

• most OSes support method to trace sequence of system
calls

• e.g., ptrace, strace, etc.

• all “interesting” behavior (e.g., networking, file I/O, etc.)
must go through system calls

• capturing sequence of system calls (plus their arguments)
reveals useful info about malware’s behavior

Examining Malware

Tracing System Calls

32

% strace ls
open("/proc/filesystems", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0444, st_size=0, ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f88345a4000
read(3, "nodev\tsysfs\nnodev\trootfs\nnodev\tb"..., 1024) = 346
read(3, "", 1024) = 0
close(3) = 0
munmap(0x7f88345a4000, 4096) = 0
open("/usr/lib/locale/locale-archive", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=2772576, ...}) = 0
mmap(NULL, 2772576, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f88330f9000
close(3) = 0
ioctl(1, SNDCTL_TMR_TIMEBASE or TCGETS, {B38400 opost isig icanon echo ...}) = 0
ioctl(1, TIOCGWINSZ, {ws_row=24, ws_col=80, ws_xpixel=0, ws_ypixel=0}) = 0
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3
fcntl(3, F_GETFD) = 0x1 (flags FD_CLOEXEC)
getdents(3, /* 36 entries */, 32768) = 1104
getdents(3, /* 0 entries */, 32768) = 0
close(3) = 0
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 1), ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f88345a4000
write(1, "mail R shared tmp work\n", 27) = 27
close(1) = 0
munmap(0x7f88345a4000, 4096) = 0
close(2) = 0
exit_group(0) = ?

33

• Observe filesystem changes and
network IO:

• “diff” the filesystem before and after

• which files are the malware reading/writing?

• capture network packets

• to whom is the malware communicating

Examining Malware

34

• Utilize hidden kernel module:
•capture all activity
•challenge: encryption

Examining Malware

Challenges

• Honeypot must resemble actual machine

• simulate actual services (Apache, MySQL, etc.)
• but not too much... bad form to actually help

propagate the worm (legal risks!)
• Some worms do a reasonably good job of

detecting honeypots

35

Honeynets

• Honeynet: also called honeyfarms
•Collection of honeypots that simulate a

network; or
• Single honeypot that emulates services on

multiple emulated “machines” (that is, on a
network)

36

Example Deployment

37

honeyd

• Open-source virtual honeynet
• creates virtual hosts on network
• services actually run on a single host
• scriptable services

38

honeyd example:
FTP service (ftp.sh)

3
9

echo "$DATE: FTP started from $1 Port $2" >> $log
echo -e "220 $host.$domain FTP server (Version wu-2.6.0(5) $DATE) ready."
...
case $incmd_nocase in

QUIT*)
echo -e "221 Goodbye.\r"
exit 0;;

SYST*)
echo -e "215 UNIX Type: L8\r"
;;

HELP*)
echo -e "214-The following commands are recognized (* =>'s unimplemented).\r"
echo -e " USER PORT STOR MSAM* RNTO NLST MKD CDUP\r"
echo -e " PASS PASV APPE MRSQ* ABOR SITE XMKD XCUP\r"
echo -e " ACCT* TYPE MLFL* MRCP* DELE SYST RMD STOU\r"
echo -e " SMNT* STRU MAIL* ALLO CWD STAT XRMD SIZE\r"
echo -e " REIN* MODE MSND* REST XCWD HELP PWD MDTM\r"
echo -e " QUIT RETR MSOM* RNFR LIST NOOP XPWD\r"
echo -e "214 Direct comments to ftp@$domain.\r"
;;

Internet Background Radiation

40

• Internet Background Radiation or
Backscatter: Traffic that is sent to addresses on
which no device is set up (these unused portions
of the Internet are called darknets)

• Backscatter primarily originates from spam,
worms, and port scans

• Estimated at 5.5Gbps

• Estimated that 70% of background radiation due
to Conficker Worm

Virtual Machines
• Virtual machine: isolated virtual hardware running within a

single operating system

• i.e., a software implementation of hardware

• usually provides emulated hardware which runs OS and other
applications

• i.e., a computer inside of a computer

• What’s the point?

• extreme software isolation -- programs can’t easily interfere with
one another if they run on separate machines

• much better hardware utilization than with separate machines

• power savings

• easy migration -- no downtime for hardware
repairs/improvements

41

Virtual Machines

4
2

Virtual Machines

Honeypots and Virtual Machines

43

• Most virtual machines provide checkpointing features

• Checkpoint (also called snapshot) consists of all VM state
(disk, memory, etc.)

• In normal VM usage, user periodically creates snapshots before
making major changes

• Rolling back (“restoring”) to snapshot is fairly inexpensive

• Checkpointing features are very useful for honeypots

• Let malware do its damage

• Pause VM and safely inspect damage from virtual machine monitor

• To reset state, simply restore back to the checkpoint

Honeypots and Virtual Machines

44

• Virtual Machines are also very useful for analyzing
malware:
• execute malware one instruction at a time
• pause malware
• easily detect effects of malware by looking at

“diffs” between current state and last snapshot
• execute malware on one VM and uninfected

software on another; compare state

Detecting VMs
• Lots of research into detecting when you’re in a virtual

machine (i.e., to prevent dynamic analysis)

• examine hardware drivers

• time certain operations

• look at ISA support

• Malware does this too!

• if not in VM, wreak havoc

• if in VM, self-destruct

• So, to be malware-free, why not run your host in a virtualized
environment?

45

