

CSCI 667: Concepts of Computer Security

Prof.Adwait Nadkarni

Derived from slides by William Enck and Micah Sherr

Project Presentations

- 4 presenters, room for 2 more (by 11 am today)
- I 5 min: I 0 minute presentations, 5 mins questions
- Must contain (in no specific order, whatever flow makes sense):
 - Area and Motivation
 - Problem
 - Proposed Methodology
 - Expected Results
 - Project Status
 - Completed Tasks and Preliminary results.
 - Remaining Tasks

TCP/IP security (read the Bellovin paper!)

Network Stack, yet again

Networking

- Fundamentally about transmitting information between two devices
- Communication is now possible between any two devices anywhere (just about)
 - Lots of abstraction involved (see previous slide)
 - Lots of network components (routers)
 - Standard protocols (e.g., IP, TCP, UDP)
 - Wired and wireless
- What about ensuring security?

Network Security

- Every machine is connected
 - No barrier to entry
 - Not just limited to dogs as users

"On the Internet, nobody knows you're a dog."

Exploiting the network

- The Internet is extremely vulnerable to attack
 - it is a huge open system ...
 - which adheres to the end-to-end principle
 - smart end-points, dumb network
- Can you think of any large-scale attacks that would be enabled by this setup?

Network Security: The high bits

- The network is ...
 - ... a collection of interconnected computers
 - ... with resources that must be protected
 - ... from unwanted inspection or modification
 - ... while maintaining adequate quality of service.

Network Security: The high bits

- Network Security (one of many possible definitions):
 - Securing the network infrastructure such that the integrity, confidentiality, and availability of the resources is maintained.

Steven Bellovin's Security Problems in the TCP/IP Protocol Suite

- Bellovin's observations about security problems in IP
 - Not really a study of how IP is misused (e.g., IP addresses for authentication), but rather what is inherently bad about the way in which IP is set up
- A really, really nice overview of the basic ways in which security and the IP design is at odds

TCP Sequence Numbers

- TCP's "three-way handshake":
 - each party selects Initial Sequence Number (ISN)
 - shows both parties are capable of receiving data
 - offers some protection against forgery -- WHY?

TCP Sequence Numbers

TCP Sequence Numbers

How do we fix this?

Randomize ISNs
 How?

Source Routing

- Standard IP Packet
 Format (RFC791)
- Source Routing allows sender to specify route
 - Set flag in *Flags* field
 - Specify routes in Options field

Source Routing

Bob Barker

Source Routing

- Q:What are the security implications of Source Routing?
 - Access control?
 - DoS?
- Q:What are the possible defenses?
 - A: Block packets with source-routing flag

Routing Manipulation

- RIP Routing Information Protocol
 - Distance vector routing protocol used for the local network
 - Routers exchange reachability and "distance" vectors for all the subnetworks within (a typically small) domain
 - Use vectors to decide which route is best
- **Problem:** Data (vectors) are not authenticated
 - Forge vectors to cause traffic to be routed through adversary
 - or cause DoS
- Solutions: ? (still an open problem)

Internet Control Message Protocol (ICMP)

- ICMP is used as a control plane for IP messages
 - Ping (connectivity probe)
 - Destination unreachable (error notification)
 - Time-to-live exceeded (error notification)
- ICMP messages are easy to spoof: no handshake
- Some ICMP messages cause clients to alter behavior
 - e.g., TCP RSTs on destination unreachable or TTL-exceeded
- Enables attacker to <u>remotely</u> reset others' connections
- Solution:
 - Verify/sanity check sources and content
 - Filter most of ICMP

Ping-of-Death: Background: IP Fragmentation

- I6-bit "Total Length" field allows 2¹⁶-I=65,535 byte packets
- Data link (layer 2) often imposes significantly smaller Maximum Transmission Unit (MTU) (normally 1500 bytes)
- Fragmentation supports packet sizes greater than MTU and less than 2¹⁶
- I3-bit Fragment Offset specifies offset of fragmented packet, in units of 8 bytes
- Receiver reconstructs IP packet from fragments, and delivers it to Transport Layer (layer 4) after reassembly

4	4 8	8	16 19	
Version	Length	Type of Service	Total Length	
Identification			Flags	Fragment Offset
Time to Live		Protocol	Header Checksum	
		Source A	ddress	
		Destination	n Address	
		Optic	ons	
		Dat	а	

Ping-of-Death

- Maximum packet size: 65,535 bytes
- Maximum 13-bit offset is (2¹³ 1) * 8 = 65,528
- In 1996, someone discovered that many operating systems, routers, etc. could be crash/rebooted by sending a single malformed packet
 - If packet with maximum possible offset has more than 7 bytes, IP buffers allocated with 65,535 bytes will be overflowed (65535-65528 = 7)
 - ...causing crashes and reboots
- Not really ICMP specific, but easy
 - % ping -s 65510 your.host.ip.address
- Most OSes and firewalls have been hardened against PODs
- This was a popular pastime of early hackers

ARP Spoofing: Background: Ethernet Frames

ARP Spoofing: Background:ARP

- Address Resolution Protocol (ARP): Locates a host's link-layer (MAC) address
- Problem: How does Alice communicate with Bob over a LAN?
 - Assume Alice (10.0.0.1) knows Bob's (10.0.0.2)
 IP
 - LANs operate at layer 2 (there is no router inside of the LAN)
 - Messages are sent to the switch, and addressed by a host's link-layer (MAC) address
- Protocol:
 - Alice broadcasts: "Who has 10.0.0.2?"
 - Bob responses: "I do! And I'm at MAC f8:1e:df:ab:33:56."

ARP Spoofing

- Each ARP response overwrites the previous entry in ARP table -- last response wins!
- Attack: Forge ARP response
- Effects:
 - Man-in-the-Middle
 - Denial-of-service
- Also called ARP Poisoning or ARP Flooding

ARP Spoofing: Defenses

- Smart switches that remember MAC addresses
- Switches that assign hosts to specific ports

Legacy flawed protocols and services

Finger user identity

host gives up who is logged in, existence of identities

```
[ip-128-239-134-5:CSCI680 adwait$ finger adwait
                                        Name: Adwait
Login: adwait
Directory: /Users/adwait
                                        Shell: /bin/bash
On since Wed Sep 27 10:27 (EDT) on console, idle 28 days 8:11 (messages off)
On since Wed Sep 27 13:56 (EDT) on ttys000, idle 14 days 3:48
On since Wed Oct 11 14:44 (EDT) on ttys001, idle 14 days 3:50
On since Thu Oct 5 12:32 (EDT) on ttys002, idle 14 days 1:07
On since Wed Oct 18 14:41 (EDT) on ttys003, idle 1 day 6:41
On since Wed Oct 25 18:35 (EDT) on ttys004
No Mail.
No Plan.
Login: adwaitnadkarni
                                        Name: Adwait Nadkarni
                                        Shell: /bin/bash
Directory: /Users/adwaitnadkarni
Never logged in.
No Mail.
No Plan.
ip-128-239-134-5:CSCI680 adwait$
```

- This is horrible in a distributed environment
 - Privacy, privacy, privacy ...
 - Lots of information to start a compromise of the user.

POP/SMTP/FTP

- Post office protocol mail retrieval
 - Passwords passed in the clear
 - Solution: SSL, SSH, Kerberos
- Simple mail transport protocol (SMTP) email
 - Nothing authenticated: SPAM
 - Nothing hidden: eavesdropping
 - Solution: ?
- File Transfer protocol file retrieval
 - Passwords passed in the clear
 - Solution: SSL, SSH, Kerberos

Lessons Learned?

- The Internet was built for robust communication
- Smartness occurs at the end-hosts

(see End-to-End Principle)

• Does this design support or hinder network security?

And if we had to start all over again, could we do better?