

CSCI 680: Computer & Network Security

Lecture I4

Prof.Adwait Nadkarni Fall 2017

Derived from slides by William Enck

Announcements

- Research Plan Assigned!
 - Due on November 14, 11:59PM
 - Start the research project before submitting the plan, i.e., now.

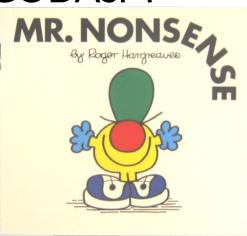
Midterm Grades!

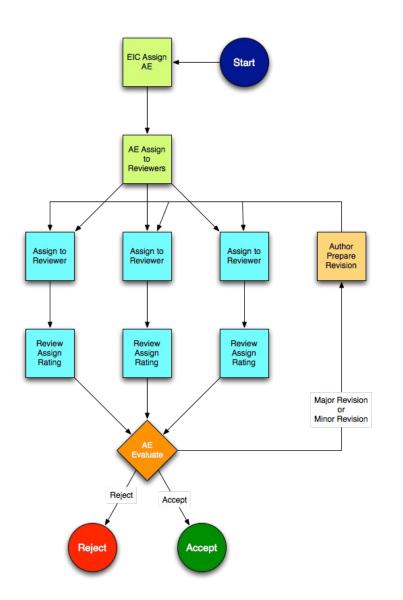
Security Research Methods II

Why write a paper?

- There are many reasons to write a paper:
 - Articulate a new idea, thought, or observation ...
 - Document your research ...
 - Talk about new (observed) phenomenon
 - Advance your career ...
 - Because you have to ...
 - Reality: publication is the coin of the realm in science, failure to do this successfully will lead to failure. You have to be effective at this to be a good (a) graduate student, (b) faculty member, or [sometimes] (c) researcher in professional research laboratory (IBM/AT&T/MS)

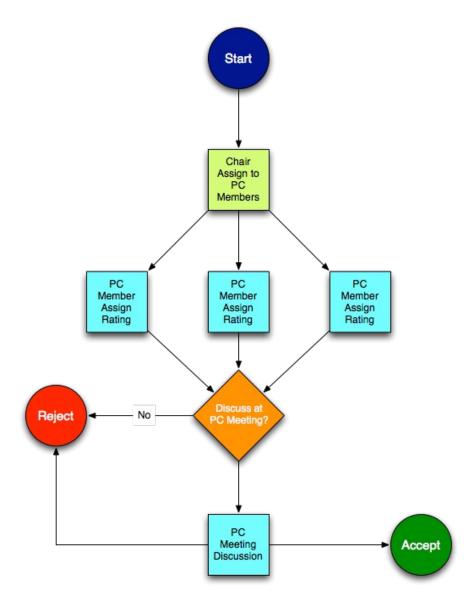
Where to publish?


- Venues for publication:
 - Tech report
 - Workshop
 - Conference
 - Journal


- Often your work will work through these from *preliminary* to *archival* versions of the work, sometimes branching or joining.
- Book: less frequent, more work.

Publication Tiers

- Not all publication venues are valued the same. Publication "tiers" tell the story
- Ist tier IEEE S&P, USENIX Sec, CCS, NDSS, TOPS (formerly TISSEC), JCS
- 2nd tier ACSAC, ACNS, ESORICS, CSF, RAID, AsiaCCS, TOIT
- 3rd tier SecureComm, ICISS, WiSec, CODASPY
- 4th tier HICS
 - SCIgen (WMSCI 2005)
 - http://pdos.csail.mit.edu/scigen/



Journal publication

- The editor-in-chief (EIC) receives the papers as they are submitted.
- The papers are assigned to associate editors for handling.
- Anonymous reviewers rate the paper:
 - Accept without changes
 - Minor revision
 - Major revision
 - Reject

Conference Publication

- The PC Chair is the person who marshals the reviewing and decisions of a conference. This is different than the general chair.
- PC members review, rate and discuss, the paper, then vote on which ones are accepted.
- The acceptance rate is the ratio of accepted to submitted papers.

Paper evaluation

- •A paper is evaluated on
 - Novelty
 - Correctness
 - Impact
 - Presentation
 - Relevance
 - "hotness"

Parts of a paper

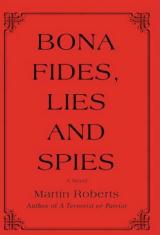
- Parts of paper (vast generalization)
- I.Abstract
- 2.Introduction
- 3.Related Work/Background
- **4.Solution/Problem**
- 5. Evaluation/Analysis/Experiment
- 6.Discussion (often, but not always)
- 7.Conclusions

Abstract

•One sentence each for:

- Area
 - Topic of work
- Problem
 - What's the issue?
- Solution
 - How do you propose to address the problem?
- Methodology
 - What's the experiment?
- Results
 - What did you find?
- Take Away: Lesson

Abstracts for course projects!


Introduction

- One paragraph each on:
- Area
 - More elaborate
- Problem
 - Scenario
- Why is problem not solved
 - Brief of related work or the challenge
- Proposed insight ("In this paper, ...")
 - What is the experiment?
- Contributions -- What will the reader learn?
- Boilerplate outline (?)

Related work

- This is a statement of the work that led to this one.
 - who this work relies on
 - who has done work in the area
 - areas that inspired this work (not just technology)
 - Not a laundry list
- There are several reasons for related work section:
 - Motivate the current work
 - Differentiate from past work
 - Establish "bona fides"

Motivation, Background

• Motivation

- Why is this a problem?
- Motivating Example: Alice...
- Why isn't the problem solved?
 - Forward/backward reference to the related work.
- **Problem, assumptions**: Problem statement, threat model, TCB.
- Background: What all does the reader need to know to understand your approach?
 - Already known material related to the solution
 - Tip:You can always move text from the design to the background, to focus on the *novel* contributions in the design.

System Architecture and Design

- How do you solve the problem?
- General Architecture / Overview
- What are the
 - Design Goals?
 - Challenges?
 - Contributions of your design (i.e., the design decisions) that help overcome the design challenges, hence achieving the design goals?

Experiment

• Experiment

- Means of showing truth
- Big Insight -- Hypothesis -- Claim
 - Show why it is interesting
- Expected Results

- Informal proof/argument that is true
- Experiment types
 - Empirical measure some aspect of the solution
 - Analytical prove something about solution
 - Observational show something about solution

Implementation

- •Experimental Platform
 - Exact specification of platform
 - Design may have more than implementation what did you implement?
 - How are key design features/mechanisms implemented?
 - Not the design: Separating the novel design contributions/decisions from their implementation is often a challenge)

Results vs Findings

- Results
 - Summarize -- what do the results mean?
 - Specific experiments
 - We did X, saw Y
 - What do the experiments prove
 - What other experiments would you want to do based on these results?
- Key Findings
 - What do the results mean?
 - What are the lessons?
 - Lead to the takeaway.

Conclusion

- •Like the abstract in past tense
- Problem
 - •What was the problem?
- Solution

•What was the insight and why was it expected to work?

- Method and Results
 - •What did you find?
- Take away: Lesson
- Future work

Hint

- Intro: tell them what you are going to tell them
- Body: tell them
- Conclusion: tell them what you told
 - them.

