
CSCI 667:
Concepts of Computer

Security

Lecture I5

Prof. Adwait Nadkarni

1Derived from slides by William Enck, Patrick McDaniel and Trent Jaeger

Announcements!
• Research Plan due: Nov 14 (next

Thursday)
• Project Status Presentations: Nov 26
• 10 minute talks

• Focus on status, feedback
•Do not expect finished projects

• 1-5 bonus points

2

Multics (continued)

What Are Protection Rings?
• Coarse-grained, Hardware Protection Mechanism
• Boundary between Levels of Authority

• Most privileged -- ring 0
• Monotonically less privileged above

• Fundamental Purpose
• Protect system integrity

• Protect kernel from services
• Protect services from apps
• So on...

10

Ring 0

Ring 3

Protection Ring Rules
• Program cannot call code of higher

privilege directly

• Gate is a special memory address
where lower-privilege code can
call higher
• Enables OS to control where

applications call it (system calls)

12

Gate

No gate

Multics Interpretation
• Kernel resides in ring 0• Process runs in a ring r

• Access based on current ring• Process accesses data (segment)• Each data segment has an
access bracket: (a1, a2)
• a1 <= a2• Describes read and write access
to segment
• r is the current ring• r <= a1: access permitted• a1 < r <= a2: r and x permitted; w

denied• a2 < r: all access denied

13

Multics Interpretation (cont’d)
•Also different procedure segments

• with call brackets: (c1, c2), c1 <= c2

• and access brackets (a1, a2)

• The following must be true (a2 == c1)

• Rights to execute code in a new procedure segment

• r < a1: access permitted with ring-crossing fault

• a1 <= r <= a2 = c1: access permitted and no fault

• a2 < r <= c2: access permitted through a valid gate

• c2 < r: access denied

•What’s it mean?
• case 1: ring-crossing fault changes procedure’s ring

• increases from r to a1

• case 2: keep same ring number

• case 3: gate checks args, decreases ring number

• Target code segment defines the new ring
14

Examples
• Process in ring 3 accesses data segment
• access bracket: (2, 4)

• What operations can be performed?

• Process in ring 5 accesses same data segment
• What operations can be performed?

• Process in ring 5 accesses procedure segment
• access bracket (2, 4)

• call bracket (4, 6)

• Can call be made?

• How do we determine the new ring?

• Can new procedure segment access the data segment above?

15

Multics Segments
• Named segments are protected by access control lists and MLS

protections

• Hierarchically arranged

• Precursor to hierarchical file systems
• Memory segment access is controlled by hardware monitor

• Multics hardware retrieves segment descriptor word (SDW)

• Like a file descriptor

• Based on rights in the SDW determines whether can access
segment

• Master mode (like root) can override protections

• Access a directory or SDW on each instruction!

16

Multics Vulnerability Analysis
• Detailed security analysis covering
• Hardware

• Software

• Procedural features (administration)

• Good news
• Design for security

• System language prevents buffer overflows

• Defined buffer sizes

• Hardware features prevent buffer overflows

• Addressing off segment is an error

• Stack grows up

• System is much smaller than current UNIX systems

17

Vulnerabilities Found
• Hardware

• Indirect addressing -- incomplete mediation

• Check direct, but not indirect address

• Mistaken modification introduced the error

• Software

• Ring protection (done in software)

• Argument validation was flawed

• Certain type of pointer was handled incorrectly

• Master mode transfer

• For performance, run master mode program (signaler) in user ring

• Development assumed trusted input to signaler -- bad combo

• Procedural

• Trap door insertion goes undetected 18

Program Vulnerabilities

Programming
• Why do we write programs?

• Function

• What functions do we enable via our programs?

• Some we want -- some we don’t need

• Adversaries take advantage of such “hidden” function

20

A Simple Program

21

int authenticated = 0;
char packet[1000];

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

A Simple Program

22

What if packet is larger
than 1000 bytes?

int authenticated = 0;
char packet[1000];

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

Address Space Layout
• Write beyond variable limit
• Can write the without limits in

some languages

• Can impact values
• In heap, on stack, in data

• Can impact execution integrity
• Can jump to arbitrary points in

the program

• Function pointers

• Return addresses

23

Text

Data

Stack

Heap

(low address)

(high address)

Buffer Overflow
• How it works

24

Local Var

Buffer

Local Var

Return Address

Func Parameters

Previous Function

New Rtn

Evil Code
Evil Code
Evil Code
Evil Code

St
ac

k
Fr

am
e

Buffer Overflow Defense
• “Canary” on the stack
• Random value placed

between the local vars
and the return address
• If canary is modified,

program is stopped

• Are we done?

25

Local Var

Buffer

Local Var

Return Address

Func Parameters

Previous Function

CANARY

A Simple Program

26

What if packet is only
1004 bytes?

int authenticated = 0;
char packet[1000];

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

Overflow of Local Variables

• Don’t need to modify return address

• Local variables may affect control

•What kinds of local variables would
impact control?

•Ones used in conditionals
(example)
• Function pointers

•What can you do to prevent that?

27

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

A Simple Program

28

What if we allocate the
packet buffer on the heap?

Heap Overflow
• Overflows may occur on the heap also
• Heap has data regions and

metadata
• Attack
• Write over heap with target

address (heap spraying)
• Hope that victim uses an

overwritten function pointer
before program crashes

29

Another Simple Program

30

Any problem with this
conditional check?

int size = BASE_SIZE;
char *packet = (char *)malloc(1000);
char *buf = (char *)malloc(1000+BASE_SIZE);

 strcpy(buf, FILE_PREFIX);
 size += PacketRead(packet);
 if (size < sizeof(buf)) {
 strcat(buf, packet);
 fd = open(buf);
 }

Integer Overflow
• Signed variables represent positive and

negative values
• Consider an 8-bit integer: -128 to 127
• Weird math: 127+1 = ???

• This results in some strange behaviors
• size += PacketRead(packet)
•What is the possible value of size?

• if (size < sizeof(buf)) {
•What is the possible result of this

condition?
• How do we prevent these errors?

31

qsee_not_in_region(list, start,
start+size);
...
int qsee_not_in_region(void
*list, long start, long end)
{
 if (end < start)
 { tmp = start; start = end;
 end = tmp; }
 // Perform validation ...
}

https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-
TrustZone-WP.pdf

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
if (authenticated)
 ProcessQuery(“Select”, partof(packet));

A Simple Program

32

Any problem with
this query request?

Parsing Errors
•Have to be sure that user input can only be used for expected function

• SQL injection: user provides a substring for an SQL query that changes the query
entirely (e.g., add SQL operations to query processing)

SELECT fieldlist FROM table

WHERE field = 'anything' OR 'x'='x';

•Goal: format all user input into expected types and ranges of values

• Integers within range

• Strings with expected punctuation, range of values

•Many scripting languages convert data between types automatically -- are
not type-safe -- so must be extra careful

33

Character Strings
• String formats
• Unicode
• ASCII -- 0x00 -- 0x7F (files and strings which contain

only 7-bit ASCII characters have the same
encoding under both ASCII and UTF-8.)
• non-ASCII -- 0x80 -- 0xF7
• Also, multi-byte formats

• Decoding is a challenge
•URL: [IPaddr]/scripts/..%c0%af../winnt/system32
•Decodes to /winnt/system32

• Markus Kuhn’s page on Unicode resources for Linux
•www.cl.cam.ac.uk/~mgk25/unicode.html

34

http://www.cl.cam.ac.uk/~mgk25/unicode.htm

Secure Input Handling
• David Wheeler’s Secure Programming for Linux and UNIX

• Validate all input; Only execute application-defined inputs!

• Avoid the various overflows

• Minimize process privileges

• Carefully invoke other resources

• Send information back carefully

35

ServerBad
Validate Input

Avoid Overflows

Minimize Privilege

Worker
Invoke Safely

Return little

The End

36

