WILLIAM & MARY

- CSCI 667:

Concepts of Computer
Security

Lecture |5

Prof. Adwait Nadkarni

Derived from slides by William Enck, Patrick McDaniel and Trent Jaeger

Announcements!

® Research Plan due: Nov 14 (next
Thursday)

® Project Status Presentations: Nov 26
® 10 minute talks
® Focus on status, feedback

® Do not expect finished projects

® |-5 bonus points

Multics (continued)

What Are Protection Rings!?

® Coarse-grained, Hardware Protection Mechanism
® Boundary between Levels of Authority

® Most privileged -- ring 0

® Monotonically less privileged above

® Fundamental Purpose

Least privileged

® Protect system integrity

Ring 1

® Protect kernel from services E—-—
Kernel
® Protect services from apps

Device drivers

Most privileged

®So on...

Device drivers

Applications

Protection Ring Rules

® Program cannot call code of higher
privilege directly
® Gate is a special memory address

where lower-privilege code can
call higher

® Enables OS to control where
applications call it (system calls)

Gate

Ring O

Multics Interpretation

® Kernel resides in ring 0
® Process runsinaring r 7
® Access based on current ring ---

® Process accesses data (segment)
® Each data segment has an 5

access bracket: (al, a2)
®al<=a2
® Describes read and write access
to segment
® ris the current ring
® r <=al:access permitted
® al <r <=a2rand x permitted; w 1

denied RWX

® 22 < r:all access denied 0

4
Ring 3 i
2

Multics Interpretation (cont'd)

® Also different procedure segments
® with call brackets: (cl, c2),cl <= c2
® and access brackets (al,a2)
® The following must be true (a2 == cl)

® Rights to execute code in a new procedure segment
® r <al:access permitted with ring-crossing fault

® al <=r <=2a2 = cl:access permitted and no fault

® a2 < r <= c2:access permitted through a valid gate

c2 < r:access denied Ring
® What’s it mean?

® case |:ring-crossing fault changes procedure’s ring

¢ increases from r to al

® case 2: keep same ring number

® case 3:gate checks args, decreases ring number

® Target code segment defines the new ring

Denied

Allow
with
gate

No ring
fault

Ring
fault

Examples

® Process in ring 3 accesses data segment
® access bracket: (2, 4)

® What operations can be performed?
® Process in ring 5 accesses same data segment

® What operations can be performed?

® Process in ring 5 accesses procedure segment

® access bracket (2,4)

® call bracket (4, 6)
® Can call be made?
How do we determine the new ring!?

Can new procedure segment access the data segment above!

Multics Segments

® Named segments are protected by access control lists and MLS
protections

® Hierarchically arranged
® Precursor to hierarchical file systems

® Memory segment access is controlled by hardware monitor
® Multics hardware retrieves segment descriptor word (SDW)
® Like a file descriptor

® Based on rights in the SDW determines whether can access
segment

® Master mode (like root) can override protections

® Access a directory or SDW on each instruction!

Multics Vulnerability Analysis

® Detailed security analysis covering

® Hardware
® Software

® Procedural features (administration)

® Good news

® Design for security

® System language prevents buffer overflows

® Defined buffer sizes

Hardware features prevent buffer overflows
® Addressing off segment is an error

® Stack grows up

System is much smaller than current UNIX systems

Vulnerabilities Found

® Hardware
® Indirect addressing -- incomplete mediation
® Check direct, but not indirect address
® Mistaken modification introduced the error
® Software

® Ring protection (done in software)
® Argument validation was flawed

® Certain type of pointer was handled incorrectly

® Master mode transfer
® For performance, run master mode program (signaler) in user ring

® Development assumed trusted input to signaler -- bad combo
® Procedural

® Trap door insertion goes undetected

Program Vulnerabilities

Programming

® Why do we write programs?
® Function

® What functions do we enable via our programs?
® Some we want -- some we don’t need

® Adversaries take advantage of such “hidden” function

20

A Simple Program

int authenticated = 0;
char packet[1000];

while ('authenticated) {
PacketRead (packet) ;
if (Authenticate (packet))
authenticated = 1;
}
i1f (authenticated)
ProcessPacket (packet) ;

A Simple Program

int authenticated = 0; . .
char packet[1000]; What lfPaCI(et IS Iarger

than 1000 bytes?

while ('authenticated) {

if (Authenticate (packet))
authenticated = 1;

}
i1f (authenticated)
ProcessPacket (packet) ;

22

Address Space Layout

(high address)

® Write beyond variable limit

® Can write the without limits in
some languages

® Can impact values

® In heap, on stack, in data

® Can impact execution integrity

® Can jump to arbitrary points in
the program

® Function pointers

® Return addresses

(low address)

Buffer Overflow

® How it works

ﬁ

‘/‘))
(© 2)
- g
(

> |
0 \
f

(

— Stack Frame

Buffer Overflow Defense

® “Canary” on the stack

® Random value placed

‘n Address between the local vars

and the return address

® If canary is modified,

program is stopped

® Are we done?

A Simple Program

int authenticated = 0; What if packet is only
char packet[1000]; 1004 bytes?

while ('authenticated) {

if (Authenticate (packet))
authenticated = 1;

}
i1f (authenticated)

ProcessPacket (packet) ;

26

Overflow of Local Variables

® Don’t need to modify return address
® Local variables may affect control

® What kinds of local variables would
impact control?

® Ones used in conditionals
(example)

® Function pointers

® What can you do to prevent that?

A Simple Program

int authenticated = 0;
char *packet = (char *)malloc(1000) ;

while i!authenticatedi i What if we a//ocate the

if (Authenticate (packet)) packet buffer on the heap?
authenticated = 1;

}
i1f (authenticated)

ProcessPacket (packet) ;

28

Heap Overflow

® Overflows may occur on the heap also

® Heap has data regions and
metadata

® Attack

® Write over heap with target
address (heap spraying)

® Hope that victim uses an
overwritten function pointer
before program crashes

buffl —»

buffd ———n

prev_size
000000030 | 0 Ja—o
..........
..........
------------ buff] Messrssnnens

...

(00000030

-t §i7e of the previous chunk
Size of this chunk (48 bytes)
with PREV_INUSE bit set

+— Size of the previous chunk

v Size of this chunk (45 bytes)

0000031 [1 a0 .vmf_.'.'.-usm.':g:
ST N SO
SNRSTRRORR SUOSUOIS OSSR S
SO SR SO

........... buff2 :

.......................

........... : (40 bytes)

........... TP PITTTTTTTTT PEPT T
.................................. B RRLLEEEEEEE
.................................. desnssianind

29

Another Simple Program

int size = BASE SIZE;
char *packet = (char *)malloc(1000);

char *buf = (char *)malloc(1000+BASE SIZE) ;

strcpy (buf, FILE PREFIX) ; Any problem with this
size += PacketRead (packet) ; conditional check?
if '

strcat (buf, packet);
fd = open (buf) ;
}

30

Integer Overflow

® Signed variables represent positive and

negative values qsee_qot_in_region(list, start,
° . o start+size);
Consider an 8-bit integer:-128 to 127 | ..
o Weird math: [27+] = ?7? int gsee_not_in_region(void
° . . . *list, long start, long end)
This results in some strange behaviors {
® size += PacketRead (packet) if (end < start)
i .) { tmp = start; start = end;
® What is the possible value of size? endztmp’.}
®if (size < sizeof (buf)) { // Perform validation ...
® What is the possible result of this !
condition!?

®* How do we prevent these errors?

https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-
TrustZone-WP.pdf

A Simple Program

int authenticated = 0;
char *packet = (char *)malloc(1000) ;

while ('authenticated) {
PacketRead (packet) ; Any Prob[em with

if (Authenticate (packet)) .
authenticated = 1; this query request?

}
if (authenticated)

32

Parsing Errors

® Have to be sure that user input can only be used for expected function
® SQL injection: user provides a substring for an SQL query that changes the query
entirely (e.g.,add SQL operations to query processing)
SELECT fieldlist FROM table

WHERE field = 'anything' OR "x'='x";

SELECT UserId, Name, Password FROM Users WHERE UserId = 105 or 1=1;

® Goal: format all user input into expected types and ranges of values
® Integers within range

® Strings with expected punctuation, range of values

® Many scripting languages convert data between types automatically -- are
not type-safe -- so must be extra careful

Character Strings

® String formats
® Unicode

® ASCII -- 0x00 -- 0x7F (files and strings which contain
only 7-bit ASCII characters have the same
encoding under both ASCII and UTF-8.)

® non-ASCII -- 0x80 -- OxF7
® Also, multi-byte formats

® Decoding is a challenge
® URL: [IPaddr]/scripts/..%c0%af../winnt/system32
® Decodes to /winnt/system32

® Markus Kuhn’s page on Unicode resources for Linux
® www.cl.cam.ac.uk/~mgk25/unicode.html

http://www.cl.cam.ac.uk/~mgk25/unicode.htm

Secure Input Handling

® David Wheeler’s Secure Programming for Linux and UNIX

® Validate all input; Only execute application-defined inputs!

® Avoid the various overflows

® Minimize process privileges
Carefully invoke other resources

Send information back carefully

Minimize Privilege

Avoid Overflows

Validate Input Invoke Safely
> .

(o
(Va2

(1
(P

>

—

Return little

The End

