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OS Security
• A secure OS should provide (at least) the following 

mechanisms
• Memory protection

• File protection
• General object protection

• Access authentication

• How do we go about designing a trusted OS?
• “Trust” in this context means something different from 

“Secure”
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Access Control Lists
• ACL: a list of the principals that are authorized to have 

access to some object.

• Eg., 
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O2

S1 Y

S2 Y

S3 Y

• Or more correctly:

O1: S1

O2: S1, S2, S3

O3: S3

• We are going to see a lot of 
examples of these throughout 
the semester.



The UNIX FS access policy
• Really, this is a bit string ACL encoding an access matrix

• E.g.,

rwx rwx rwx

• And a policy is encoded as “r”, “w”, “x” if enabled, and “-” if not, 
e.g,

rwxrw---x
• Says user can read, write and execute, group can read and write, 

and world can execute only.
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World

Group

Owner



Caveats: UNIX Filesystem
• Access is often not really this easy: you need to have certain 

rights to parent directories to access a file (execute, for 
example)
• The reasons for this are quite esoteric

• The preceding policy may appear to be 
contradictory
• A member of the group does not have execute rights, but members of the 

world do, so …

• A user appears to be both allowed and prohibited from executing 
access

• Not really: these policies are monotonic … the absence of a right 
does not mean they should not get access at all, just that that 
particular identity (e.g., group member, world) is not explicitly not be 
given that right.
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Windows grows up ...
• Windows 2000 marked the beginning of real OS 

security for the windows systems ...
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Tokens
• Like the UID/GID in a UNIX process 

• User

• Group

• Aliases

• Privileges (predefined sets of rights)

• May be specific to a domain

• Composed into global SID

• Subsequent processes inherit access tokens

• Different processes may have different rights
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ACE structure (proposed by Swift et al)
1. Type (grant or deny)
2. Flags 
3. Object Type: global UID for type (limit ACEs checked)
4. InheritedObjectType: complex inheritance
5. Access rights: access mask
6. Principal SID: principal the ACE applies to

Access Control Entries
• DACL in the security descriptor of an object

• e.g., like “rwx”
• List of access control entries (ACEs)
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ACE Authorization
• The ACEs for a particular request are totally ordered.
• Start form the top and check each:

• Checking algorithm 
• Authorizing for SIDs in token on set of rights

1. if ACE matches SID (user, group, alias, etc)
a.ACE denies access for specified right -- deny
b.ACE grants access for some rights -- need full coverage

2. If reach the bottom and not all granted, request denied
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Access Checking with 
ACEs

• Example
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Window Vista Integrity
• Integrity protection for writing
• Defines a series of protection level of increasing 

protection
• installer (highest)
• system • high (admin)
• medium (user)• low (Internet)• untrusted (lowest)

• Semantics: If subject’s (process’s) integrity level 
dominates the object’s integrity level, then the write is 
allowed
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Vista Integrity
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S1(installer)

S2(user)

S3(untrusted)

O1(admin)

02(untrusted)

03(user)



Vista Integrity
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S1(installer)

S2(user)

S3(untrusted)

O1(admin)

02(untrusted)

03(user)



And now back to UNIX ...
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UID Transition: Setuid
• A special bit in the mode bits

• Execute file 
• Resulting process has the effective (and fs) UID/GID of file owner

• Enables a user to escalate privilege
• For executing a trusted service

• Downside: User defines execution environment 
• e.g., Environment variables, input arguments, open descriptors, etc.

• Service must protect itself or user can gain root access

• All UNIX services involves root processes -- many via setuid
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/tmp Vulnerability
• creat(pathname, mode)
• S-bit to the world triple: only owner can modify that file.

• O_EXCL flag
• if file already exists this is an error

• Potential attack 
• Attacker creates file in shared space (/tmp)

• Give it a filename used by a higher authority service
• Make sure that service has permission to the file
• If creat is used without O_EXCL, then can share the file 

with the higher authority process
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Other OS Vulnerabilities
• Objects w/o sufficient control
• Windows registry, network

• Executables are everywhere
• Web content, Email, Documents (Word)

• Libraries
• Load order permits malware defined libraries

• Library search path can load malicious libraries

• Labeling is wrong
• Mount a new file system; device 

• Malware can modify your permissions
• Inherent to discretionary model
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Sandboxing

• An execution environment for programs 
that contains  a limited set of rights
•A subset of your permissions (meet 

secrecy and integrity goals)
•Cannot be changed by the 

running program (mandatory)

25



UNIX Chroot

• Create a domain in which a process is confined
• Process can only read/write within file system 

subtree
• Applies to all descendant processes
• Can carry file descriptors in ‘chroot jail’
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SYNOPSIS
chroot [-u -user] [-g -group] [-G -group,group,...] newroot [command]



Chroot Vulnerability
• Unfortunately, chroot can trick its own system
• define a passwd file at <newroot>/etc/passwd

• run su

• su thinks that this is the real passwd file

• gives root access

• Use mknod to create device file to access physical memory

• Setup requires great care
• Never run chroot process as root 

• Must not be able to get root privileges

• No control by chrooted process (user) of contents in jail

• Be careful about descriptors, open sockets, IPC that may be available
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Process-specific Permissions

•Design the permissions of a process 
specific to its use
•How do we change the permissions of 
a process in an ACL system?
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Confused Deputy Problem
• Imagine a multi-client server
• Clients have a different set of objects that they can access

• In an ACL system, the server always has access to all the 
objects
• What happens if a client tricks the server into accessing 

into another client’s objects?
• Shouldn’t the server only have access to that client’s 

objects for its requests?
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Capabilities
• A capability is the tuple (object, rights)

• A capability system implements access control by checking if the 
process has an appropriate capability
• Simple, right?

• This is a little like a ticket in the Kerberos system

• Q: Does this eliminate the need for authentication?
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Capabilities 
• A: Well, yes and no …

• Capabilities remove the overhead of managing per object 
rights, but add the overhead of managing capabilities

• Moreover, to get any real security, they have to be 
unforgeable
• Hardware tags (to protect capabilities)

• Protected address space/registers

• Language based techniques

• Enforce access restrictions on caps.

• Cryptography 

• Make them unforgeable
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Real OS Capabilities

• The OS kernel manages capabilities in the process table, out of 
reach of the process

• Capabilities added by user requests (that comply with policy)
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User space capability?
•Well, what are the requirements?
• Authenticity/integrity - do not want malicious process to 

forge capabilities

• Start with the data itself: [object, rights]
• Object is typically encoded with identifier, or by some other 

tag (capabilities are sometimes known as tags)
• Rights are often fixed (read, modify, write, execute, etc.)

•Now, do what you would with any other data (assume 
the kernel has a secret key k)

E(k, [Oi, r1, r2, … rn])
• What’s wrong with this construction (from the website of one of 

the experts in the area)?
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The right construction
• Encryption does not provide authenticity/integrity, it provides 

confidentiality

[Oi, r1, r2, … rn],HMAC(k, [Oi, r1, r2, … rn])

• So how would you attack the preceding construction?
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Procedure-Level Protection 
Domains

• HYDRA
• Each procedure defines a new protection domain• Procedure
• Code
• Data
• Capabilities to other objects
• Caller-independent
• Caller-dependent templates• Local Name Space
• Capabilities are bound here 
• Record of a procedure invocation (procedure instance)• Process
• Stack of LNSs
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How HYDRA works

• Q: Which object defines the protection domain?
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Kernel

Call Callee
+ Capabilities

Create Callee
LNS

Caller Proc

Callee Proc

Capabilities

Capabilities Data

Data

Template

Template

Caller-Dep Capabilities

Caller-Dep Capabilities



Implications of Fine-Grained 
Protection

•Programmer•Must define templates for procedure•Connect the procedure rights together•Performance Impact

•Q: Do we need to manage rights at this 
level?
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Multics



MAC Systems
•Major Effort: Multics
• Multiprocessing system -- developed many OS concepts
• Including security

• Begun in 1965 
• Development continued into the mid-70s

• Used until 2000

• Initial partners: MIT, Bell Labs, GE/Honeywell

• Other innovations: hierarchical filesystems, dynamic linking

• Subsequent proprietary system, SCOMP, became the 
basis for secure operating systems design
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Multics Goals
• Secrecy
• Multilevel security

• Integrity 
• Rings of protection

• Reference Monitoring
• Mediate segment access, ring crossing

• Resulting system is considered a high point in secure system 
design 
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Multics Basics
• Processes are programs that are executing within Multics (seems 

obvious now ...)
• Protection domain is a list of segments

• Stored in the process descriptor segment

• Segments are stored value regions that are accessible by 
processes, e.g., memory regions, secondary storage
• Segments can be organized into hierarchies 

• Local segments (memory addresses) are accessed directly

• Non-local segments are addressed by hierarchy

• /tape/drive1/top10k

• /etc/conf/http.conf

• This is the genesis of the modern hierarchical filesystem!
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Segment Management
• PDS acts like segment working set for 

process

• Segments are addressed by name 
(path)

• If authorized, added to PDS

• Multics security is defined with respect 
to segments

• The supervisor (kernel) makes decisions 
and adds to PDS

• supervisor is isolated by protection rings
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Protection Rings
• Successively less-privileged “domains”

• Modern CPUs support 4 rings

• Use 2 mainly: Kernel and user

• Intel x86 rings

• Ring 0 has kernel

• Ring 3 has application code

• Example: Multics (64 rings in theory, 8 in practice)
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What Are Protection Rings?
• Coarse-grained, Hardware Protection Mechanism
• Boundary between Levels of Authority

• Most privileged -- ring 0
• Monotonically less privileged above

• Fundamental Purpose
• Protect system integrity

• Protect kernel from services
• Protect services from apps
• So on...
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Intel Protection Ring Rules
• Each Memory Segment has a privilege level (ring 

number)

• The CPU has a Current Protection Level (CPL)
• Level of the segment where instructions are being 

read

• Program can read/write in segments of higher 
level than CPL
• kernel can read/write user space

• user cannot read/write kernel

• why not?
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Ring 0

Ring 3 

Protection Ring Rules

• Program cannot call code of higher 
privilege directly

• Gate is a special memory address 
where lower-privilege code can call 
higher
• Enables OS to control where 

applications call it (system calls)
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Gate

No gate



Multics Interpretation

• Kernel resides in ring 0• Process runs in a ring r• Access based on current ring• Process accesses data (segment)• Each data segment has an 
access bracket: (a1, a2)
• a1 <= a2• Describes read and write access to 
segment
• r is the current ring• r <= a1: access permitted• a1 < r <= a2: r and x permitted; w denied
• a2 < r: all access denied
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Multics Interpretation (cont’d)
• Also different procedure segments
• with call brackets: (c1, c2), c1 <= c2

• and access brackets (a1, a2)

• The following must be true (a2 == c1)

• Rights to execute code in a new procedure segment

• r < a1: access permitted with ring-crossing fault 

• a1 <= r <= a2 = c1: access permitted and no fault

• a2 < r <= c2: access permitted through a valid gate

• c2 < r: access denied

• What’s it mean?
• case 1: ring-crossing fault changes procedure’s ring

• increases from r to a1

• case 2: keep same ring number

• case 3: gate checks args, decreases ring number 

• Target code segment defines the new ring
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