

CSCI 667: Concepts of Computer Security

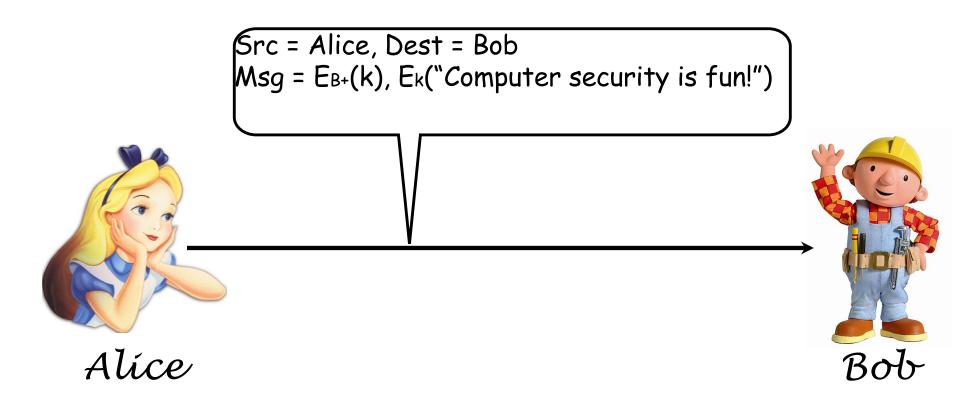
Lecture 6

Prof.Adwait Nadkarni

Derived from slides by William Enck, Micah Sherr and Patrick McDaniel

Reminder: HOMEWORK_2

- Due Oct 3rd
 - Last minute: Bad idea!
- Piazza
 - Ask for clarifications
 - Do not give out answers
 - Collaborate offline (meet, email, post, carrier pigeons, ...)
 - 25% penalty for late submissions in the first 24 hours
 - I00% penalty 24 hours after deadline.
 - Use LaTeX.
 - In the submission, *maintain symbols*: $R_i != R^i$


RSA

- Most public key systems use at least 2048-bit keys
 - Key size not comparable to symmetric key algorithms
- RSA is much slower than most symmetric crypto algorithms
 - AES: ~161 MB/s
 - RSA: ~82 KB/s
 - This is too slow to use for modern network communication!
 - Solution: Use hybrid encryption

Hybrid Cryptosystems

- In practice, public-key cryptography is used to secure and distribute session keys.
- These keys are used with symmetric algorithms for communication.
- Sender generates a random session key, encrypts it using receiver's public key and sends it.
- Receiver decrypts the message to recover the session key.
- Both encrypt/decrypt their communications using the same key.
- Key is destroyed in the end.

Hybrid Cryptosystems

(B⁺,B⁻) is Bob's long-term public-private key pair. k is the session key; sometimes called the **ephemeral key**.

Public Key Crypto (10,000 ft view)

- <u>Separate</u> keys for encryption and decryption
 - Public key: anyone can know this
 - Private key: kept confidential
- Anyone can encrypt a message to you using your public key
- The private key (kept confidential) is required to decrypt the communication
- Alice and Bob no longer have to have a priori shared a secret key

Problem? YES. How do we know if Bob's key is really Bob's?

Public Key Cryptography

 Each key pair consists of a public and private component: k⁺ (public key), k⁻ (private key)

$$D_{k^-}(E_{k^+}(m)) = m$$

- Public keys are distributed (typically) through public key certificates
 - Anyone can communicate secretly with you if they have your certificate

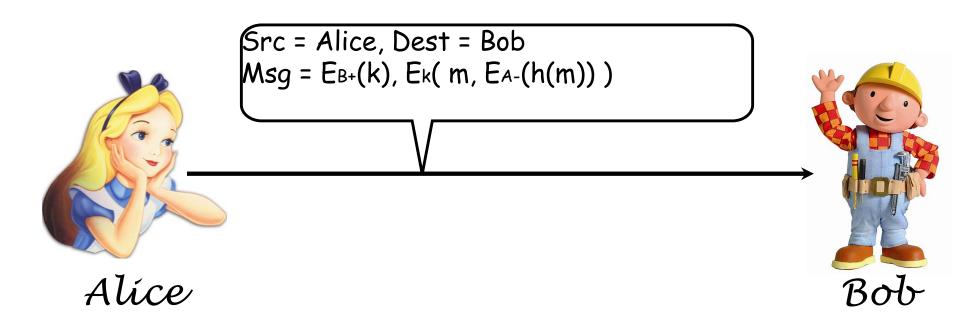
Encryption using private key

Encryption and Decryption
 E_{k-}(M) : ciphertext = plaintext^d mod n
 D_{k+}(ciphertext) : plaintext = ciphertext^e mod n

• E.g.,

- $E({3,33},4) = 4^3 \mod 33 = 64 \mod 33 = 31$
- $D({7,33},31) = 31^7 \mod 33 = 27,512,614,111 \mod 33 = 4$
- Q: Why encrypt with private key?

Digital Signatures


- A digital signature serves the same purpose as a real signature.
 - It is a mark that only sender can make
 - Other people can easily recognize it as belonging to the sender
- Digital signatures must be:
 - Unforgeable: If Alice signs message M with signature S, it is impossible for someone else to produce the pair (M, S).
 - Authentic: If Bob receives the pair (M, S) and knows Alice's public key, he can check ("verify") that the signature is really from Alice

How can Alice sign a digital document?

- Digital document: M
- Since RSA is slow, hash M to compute digest: m = h(M)
- Signature: Sig(M) = E_{k-}(m) = m^d mod n
 - Since only Alice knows k⁻, only she can create the signature
- To verify: Verify(M,Sig(M))
 - Bob computes h(M) and compares it with $D_{k+}(Sig(M))$
 - Bob can compute $D_{k+}(Sig(M))$ since he knows k⁺ (Alice's public key)
 - If and only if they match, the signature is verified (otherwise, verification fails)

Putting it all together

Define m = "Network security is fun!"

(A⁺, A⁻) is Alice's long-term public-private key pair.
(B⁺, B⁻) is Bob's long-term public-private key pair.
k is the session key; sometimes called the **ephemeral key**.

Birthday Attack and Signatures

- Since signatures depend on hash functions, they also depend on the hash function's collision resistance
- Don't use MD5 or SHA1, and start moving away from SHA2

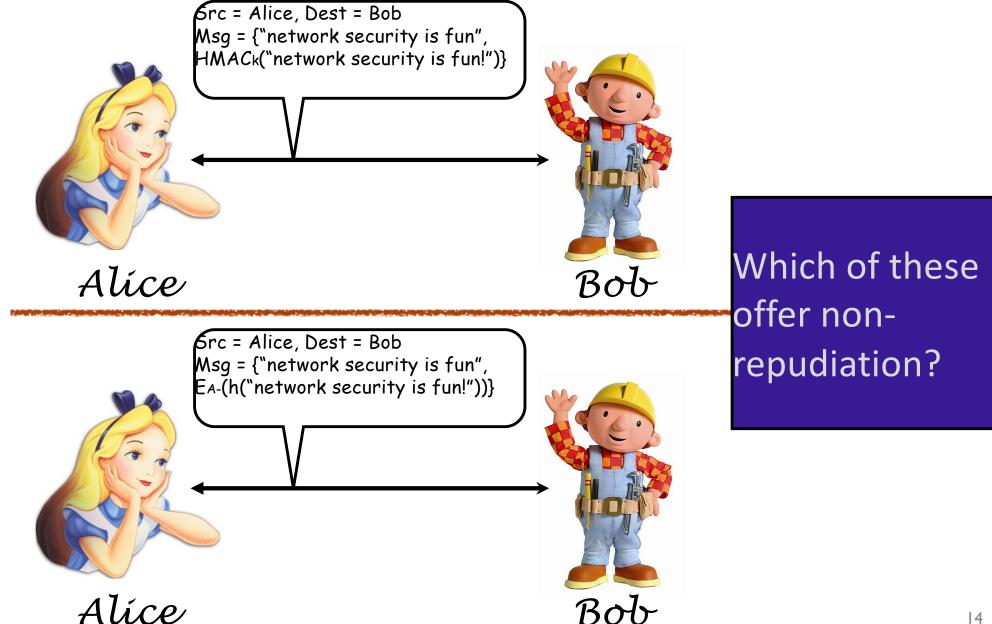
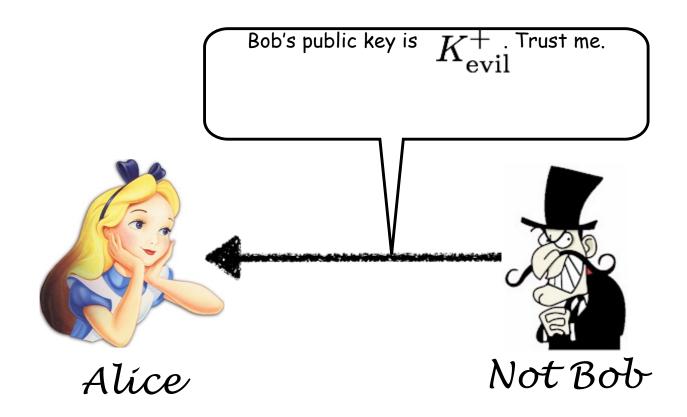
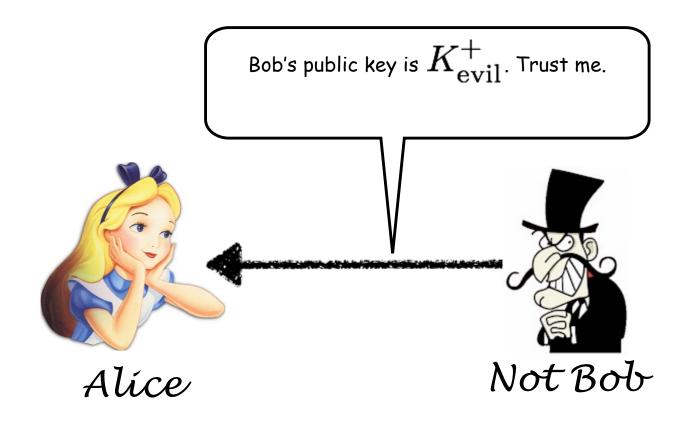

Dear Anthony,
$ \left\{ \begin{matrix} \text{This letter is} \\ \text{I am writing} \end{matrix} \right\} \text{ to introduce } \left\{ \begin{matrix} \text{you to} \\ \text{to you} \end{matrix} \right\} \left\{ \begin{matrix} \text{Mr.} \\ \end{matrix} \right\} \text{ Alfred } \left\{ \begin{matrix} \text{P.} \\ \end{matrix} \right\} $
Barton, the $\begin{cases} new \\ newly appointed \end{cases}$ $\begin{cases} chief \\ senior \end{cases}$ jewellery buyer for $\begin{cases} our \\ the \end{cases}$
Northern ${European}$ ${area}$ $Will take \\ Europe \\ division \\ He {has taken}$ over ${the}$
responsibility for $\begin{cases} all \\ the whole of \end{cases}$ our interests in $\begin{cases} watches and jewellery \\ jewellery and watches \end{cases}$
in the $\left\{ \begin{array}{c} area \\ region \end{array} \right\}$. Please $\left\{ \begin{array}{c} afford \\ give \end{array} \right\}$ him $\left\{ \begin{array}{c} every \\ all the \end{array} \right\}$ help he $\left\{ \begin{array}{c} may need \\ needs \end{array} \right\}$
to ${\text{seek out}}{\text{find}}$ the most ${\text{modern}}{\text{up to date}}$ lines for the ${\text{top}}{\text{high}}$ end of the
market. He is ${ empowered \\ authorized }$ to receive on our behalf ${ samples \\ specimens }$ of the
of ten thousand dollars. He will ${carry \\ hold}$ a signed copy of this ${letter \\ document}$
as proof of identity. An order with his signature, which is ${appended \\ attached}$
$ \left\{ \begin{array}{c} \texttt{authorizes} \\ \texttt{allows} \end{array} \right\} \hspace{0.2cm} \texttt{you to charge the cost to this company at the } \left\{ \begin{array}{c} \texttt{above} \\ \texttt{head office} \end{array} \right\} $
address. We $\begin{cases} fully \\ \end{cases}$ expect that our $\begin{cases} level \\ volume \end{cases}$ of orders will increase in the $\begin{cases} following \\ next \end{cases}$ year and $\begin{cases} trust \\ hope \end{cases}$ that the new appointment will $\begin{cases} be \\ prove \end{cases}$
{advantageous} {an advantage} to both our companies.
Figure 11.7 A Letter in 237 Variations

Figure 11.7A Letter in 2³⁷ Variations(from Stallings, Crypto and Net Security)2

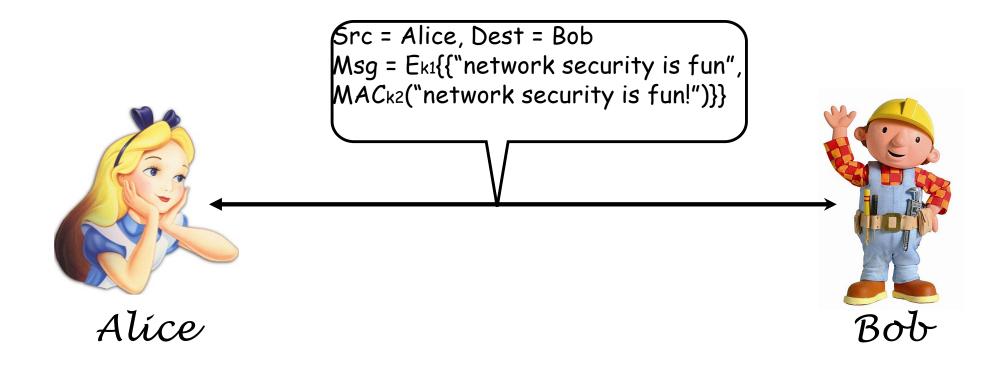

Properties of a Digital Signature

- No forgery possible: No one can forge a message that is purportedly from Alice
- Authenticity check: If you get a signed message you should be able to verify that it's really from Alice
- No alteration/Integrity: No party can undetectably alter a signed message
- Provides authentication, integrity, and nonrepudiation (cannot deny having signed a signed message)


Non-Repudiation

But how do we verify we're using the correct public key?

But how do we verify we're using the correct public key?


Short answer: We can't.

It's turtles all the way down.

Authentication, Part I: Sharing a Private (Symmetric) Key

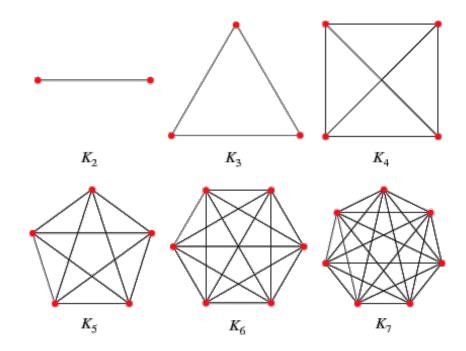
Encryption and Message Authenticity

Key Distribution

- Suppose Alice has an channel for communicating with Bob.
- Alice and Bob wish to use this channel to established a shared secret.
- However, Eve is able to learn everything sent over the channel.
- If Alice and Bob have no other channel to use, can they establish a shared secret that Eve does not know?

Key Distribution

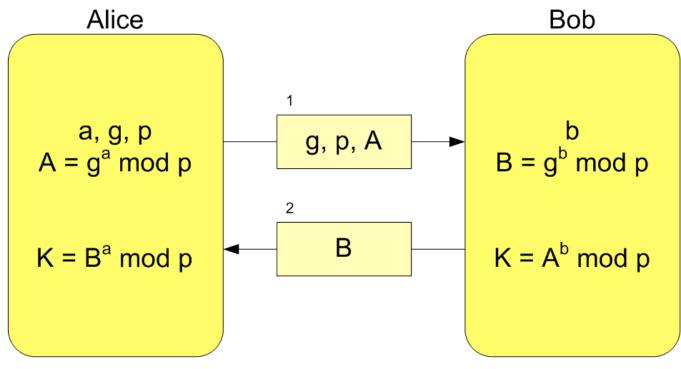
- Secure key distribution without asymmetric cryptography is difficult
- Simple approach: send key through an outof-band channel



Key Distribution

• Pairwise key distribution requires $\binom{N}{2}$ plastic cups

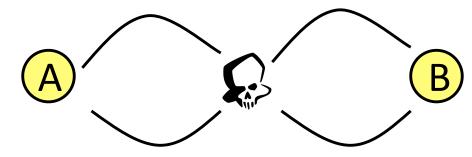
Key Distribution and Key Agreement


- Key Distribution is the process where we assign and transfer keys to a participant
 - Out of band (e.g., passwords, simple)
 - During authentication (e.g., Kerberos)
- Key Agreement is the process whereby two or more parties negotiate a key

Diffie-Hellman (DH) Key Agreement

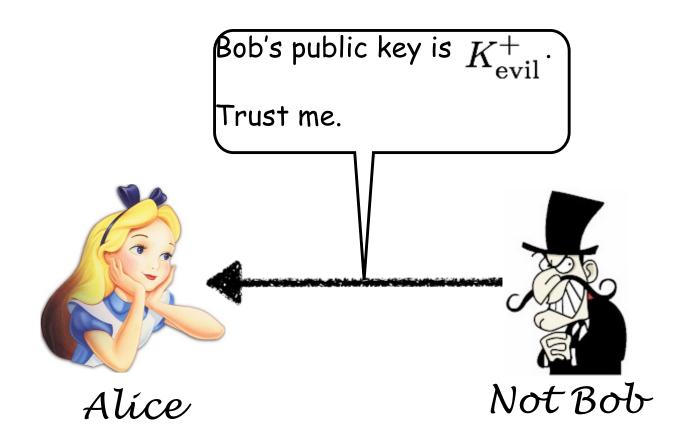
- The DH paper started the modern age of cryptography, and indirectly the security community
 - Negotiate a secret over an insecure media
 - E.g., "in the clear" (seems impossible)
 - Idea: participants exchange intractable puzzles that can be solved easily with additional information
- Mathematics are very deep
 - Use the hardness of computing discrete logarithms in finite field to make secure

Diffie-Hellman (DH) Key Agreement


- Proposed by Whitfield Diffie and Martin Hellman in 1976
- g=base, p=prime (>512 bits), a=Alice's secret, b=Bob's secret
 - g is a primitive root of p, and g < p ; p and g are publicly known
- Eve cannot compute K without knowing either a or b (neither of which is transmitted), even if she (passively) intercepts all communication!

 $K = A^{b} \mod p = (g^{a} \mod p)^{b} \mod p = g^{ab} \mod p = (g^{b} \mod p)^{a} \mod p = B^{a} \mod p$

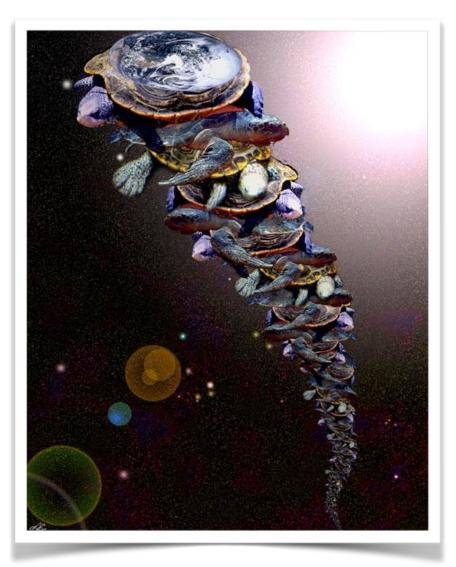
Attacks on Diffie-Hellman


- Subject to **Man-in-the-Middle** (MitM) attack
 - You really don't know anything about who you have exchanged keys with

- Alice and Bob think they are talking directly to each other, but Mallory is actually performing two separate exchanges
- Fix: Authenticated DH exchange
 - The parties sign the exchanges (more or less)
 - Requires pre-shared knowledge or trusted third party

Authentication Part II: Public Key Distribution

How do we verify we're using the correct public key?



Why not just use a database?

- Every user has his/her own public key and private key.
- Public keys are all published in a database.
- Alice gets Bob's public key from the database
- Alice encrypts the message and sends it to Bob using Bob's public key.
- Bob decrypts it using his private key.
- What's the problem with this approach?

Solving the Turtles Problem

- We need a trust anchor
 - there must be someone with authority
 - requires a priori trust
- Solution: form a trust hierarchy
 - "I believe X because..."
 - "Y vouches for X and..."
 - "Z vouches for Y and..."
 - "I <u>implicitly</u> trust **Z**."

Browser Certificate

Sertificate	nase.com	
chandard Issued by	r: VeriSign Class 3 International Server CA - G3	
	Thursday, August 16, 2012 7:59:59 PM ET	
	ertificate is valid	
Details		
Subject Name		
Country	US	
State/Province	New Jersey	
Locality	Jersey City	
Organization	JPMorgan Chase	
Organizational Unit	CIG	
Common Name	www.chase.com	
Issuer Name		
Country	US	
Organization	VeriSign, Inc.	
Organizational Unit	VeriSign Trust Network	
Organizational Unit	Terms of use at https://www.verisign.com/rpa (c)10	
Common Name	VeriSign Class 3 International Server CA - G3	
Serial Number	61 5C 33 29 65 09 08 60 A4 E6 82 50 00 F6 22 F0	
Version	3	
Signature Algorithm	SHA-1 with RSA Encryption (12 840 113549 1 1 5)	
Parameters	none	
Not Valid Before	Tuesday, August 16, 2011 8:00:00 PM ET	
Not Valid After	Thursday, August 16, 2012 7:59:59 PM ET	

Class 3 Public Primary Certification Authority

→ 📴 www.chase.com

Image: Second Structure
 <l

What's a certificate?

- A certificate ...
 - ... makes an association between an identity and a private key
 - ... contains public key information {e,n}
 - ... has a validity period
 - ... is signed by some certificate authority (CA)
 - ... identity may have been vetted by a *registration authority* (RA)
- People trust CA (e.g., Verisign) to vet identity

Why do I trust the certificate?

- A collections of "root" CA certificates
 - ... baked into your browser
 - ... vetted by the browser manufacturer
 - ... <u>supposedly</u> closely guarded
- Root certificates used to validate certificate
 - Vouches for certificate's authenticity

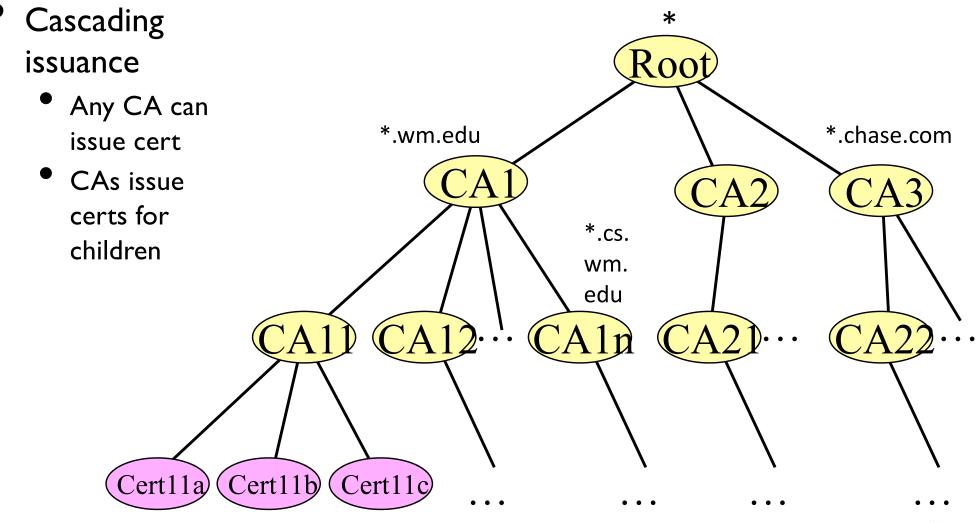
000

Certificate Manager

ĸ

ertificate Nan	1e	Security Device	Ę
The Go Dad	ldy Group, Inc.		A
Go Dado	ly Secure Certification Authority	Software Security Device	
Go Dado	ly Class 2 CA	Builtin Object Token	
The USERT	RUST Network		
Network	Solutions Certificate Authority	Software Security Device	
Register	.com CA SSL Services (OV)	Software Security Device	
UTN-US	ERFirst-Hardware	Builtin Object Token	
	ATACorp SGC	Builtin Object Token	
UTN-US	ERFirst-Network Applications	Builtin Object Token	
	ERFirst-Client Authentication and Em		
	ERFirst–Object	Builtin Object Token	
-	msel ve Teknolojik Araştırma Kurumı		
	UEKAE Kök Sertifika Hizmet Sağlayıd	-	
	Bilgi İletişim ve Bilişim Güvenliği Hi		
	UST Elektronik Sertifika Hizmet Sağla	ay Builtin Object Token	
	of Pennsylvania		
	Authority	Software Security Device	
Unizeto Sp.			0
Certum		Builtin Object Token	U
ValiCert, In			
	lic Root CA v1	Software Security Device	
	ww.valicert.com/	Builtin Object Token	¥
http://w	ww.valicert.com/	Builtin Obiect Token	

4 0


Privacy error ×										
4	⇒	G	The https://www.csc.ncsu.edu	2	*	M	5	≡		
			Your connection is not private							
			Attackers might be trying to steal your information from www.csc.ncsu.edu (for							
			example, passwords, messages, or credit cards). NET::ERR_CERT_COMMON_NAME_INVALID							
			Automatically report details of possible security incidents to Google. Privacy policy							
			Advanced Back to safety							

Public Key Infrastructure

- Hierarchy of keys used to authenticate certificates
- Requires a root of trust (i.e., a trust anchor)

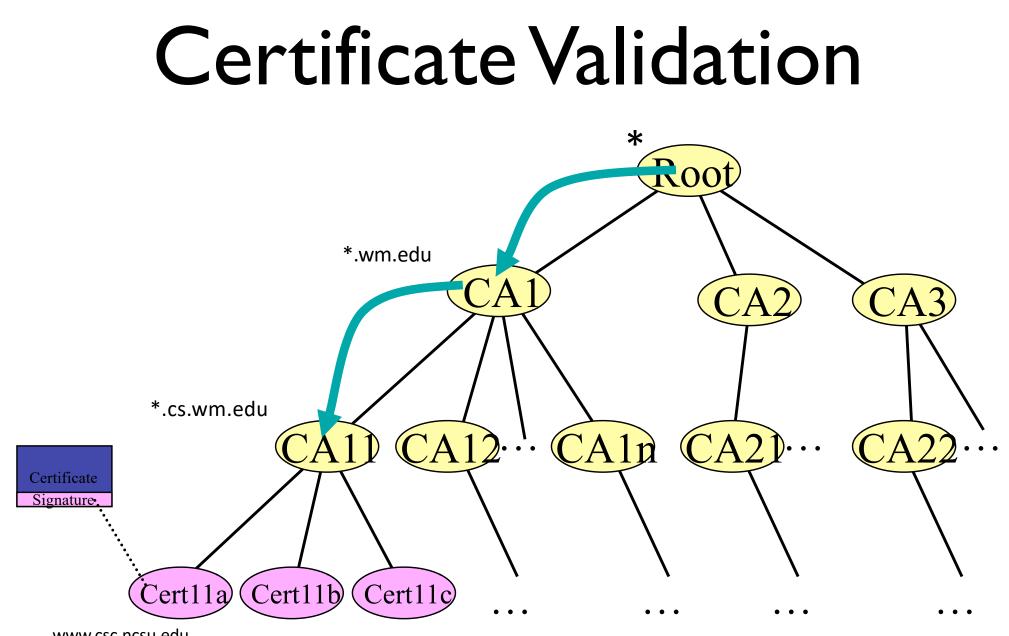
What is a PKI?

 Rooted tree of CAs

Obtaining a Certificate

•Alice has some identity document A^{ID} and generates a keypair (A⁻, A⁺)

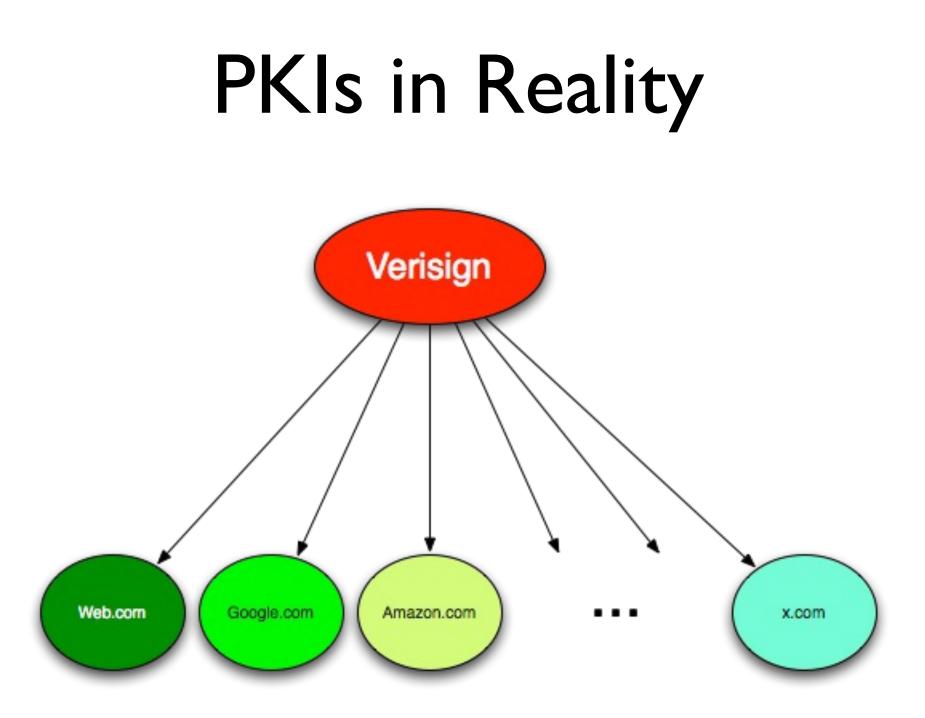
 $\textbf{2.A} \rightarrow \textbf{CA}: \ \{\textbf{A}^{+}, \textbf{A}^{\text{ID}}\}, \ \textbf{Sig}(\textbf{A}^{-}, \{\textbf{A}^{+}, \textbf{A}^{\text{ID}}\})$


- CA verifies signature -- proves Alice has A⁻
- CA may (and should!) also verify A^{ID} offline

3.CA signs $\{A^+, A^{\text{ID}}\}\$ with its private key (CA⁻)

• CA attests to binding between A+ and A^{ID}

 $4.CA \rightarrow A : \{A^+, A^{\text{ID}}\}, \text{Sig}(CA^-, \{A^+, A^{\text{ID}}\})$


- this is the certificate; Alice can freely publish it
- anyone who knows CA⁺ (and can therefore validate the CA's signature) knows that CA "attested to" {A⁺, A^{ID}}
- note that CA never learns A⁻

www.csc.ncsu.edu

Certification Authorities

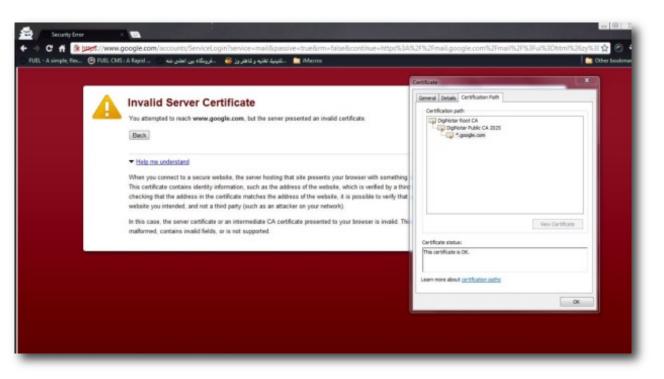
- Guarantee connection between public key and end entity
 - Man-in-the-Middle no longer works undetected
 - (If you verify the identity in the certificate against peer)
 - Guarantee authentication and non-repudiation
 - (If a CA doesn't make a mistake)
 - Privacy/confidentiality not an issue here
 - Only concerned with linking key to owner
- Distribute responsibility
 - Hierarchical structure
 - (Doesn't exist in practice-- no good way to restrict delegation)

PKI and Revocation

- Certificate may be revoked before expiration
 - Lost private key
 - Compromised
 - Owner no longer authorized
- Revocation is hard ...
 - Verifiers need to check revocation state
 - Loses the advantage of off-line verification
 - Revocation state must be authenticated

- Any CA may sign any certificate
- Browser weighs all root CAs equally
- Q: Is this problematic?

The DigiNotar Incident


DigiNotar Incident

- DigiNotar is a CA based in the Netherlands that is (well, was) trusted by most OSes and browsers
- July 2011: Issued fake certificate for gmail.com to site in Iran that ran MitM attack...
- ... this fooled most browsers, but...

DigiNotar Incident

- As added security measure, Google
 Chrome hardcodes fingerprint of
 Google's certificate
- Since DigiNotar didn't issue
 Google's true
 certificate, this
 caused an error
 message in
 Chrome

Meta-Issue: How much should we trust CAs?

(Because right now, we trust them a lot.)

IO Risks of PKI

Carl Ellison and Bruce Schneier

- PKI, like many security technologies, claimed to be a panacea
- It was intended to solve a very hard problem: build trust on a global level

Risk I:

Who do we trust, and for what?

- Argument: CA is not inherently trustworthy
 - Why do/should you trust a CA?
 - Risk in the hands of the certificate holder
- Counter-Argument: Incentives
 - Any CA caught misbehaving is going to be out of business tomorrow
 - Risk held by everybody, which is what you want
 - Everyone has reason to be diligent

Risk 2: Who is using my key?

- How do you protect your certificate?
- Is your computer/network completely secure?
- Who is responsible if your key is compromised?

Risk 3: How secure is the verifier?

- What happens if attacker is able to insert his public root CA key to the verifier's list of trusted CAs?
- More generally, what are the consequences if the verifier is compromised?
- Q:What's in your browser?
 - E.g., Superfish

Risk 4: Which John Robinson is he?

- Argument: identity in PKI is too loosely defined
 - No standards for getting credential
 - No publicly known unique identifiers for people
 - So, how do you tell people apart
- Counter-Argument: due diligence
 - Only use certificates in well known circumstances
 - When in doubt, use other channels to help

Risk 5: Is the CA an authority?

- Argument: there are things in certificates that claim authenticity and authorization of which they have no dominion
 - DNS, attributes -- the CA is not the arbiter of these things

Risk 8: How did the CA identify the certificate holder?

- How well do CAs really authenticate the person requesting the certificate?
- What are the potential consequences?

Risk 9: How secure are the certificate practices?

- What happens if the CA's private key is compromised?
- Are certificate revocation lists (CRLs) used?
- What is an appropriate certificate lifetime? [This is both a security question and an MBA question]

Key Management Summary

- Key management is HARD
- PKI is not a panacea
- Devil is in the details