
CSCI 667:
Concepts of Computer

Security

Lecture 5

Prof. Adwait Nadkarni

1
Derived from slides by William Enck, Micah Sherr, Patrick McDaniel and Peng Ning

Using hashes as
authenticators

• Consider the following scenario

• Prof. Smart E. Pants has not decided if she will cancel the next lecture.

• When she does decide, she communicates to Bob the student through Mallory, her evil TA.

• She does not care if Bob shows up to a cancelled class, but she does not want students to
not show up if the class hasn’t been cancelled

• Prof. Pants does not trust Mallory to deliver the message.

• Prof. Smart E. Pants and Bob use the following protocol:

• Prof. Pants invents a secret t

• Prof. Pants gives Bob h(t), where h() is a crypto hash function

• If she cancels class, she gives t to Mallory to give to Bob

• If does not cancel class, she does nothing

• If Bob receives the token t, he knows that Prof. Pants sent it

2

Hash Authenticators
• Why is this protocol secure?

–t acts as an authenticated value (authenticator) because
Mallory could not have produced t without inverting h()

–Note: Mallory can convince Bob that class is occurring when
it is not by simply not delivering t (but we assume Bob is
smart enough to come to that conclusion when the room is
empty)

• Note that it is important that Bob gets the original value h(t)
from Alice directly (was provably authentic)

3

Hash chain
• Now, consider the case where Alice wants to do the same protocol,

only for all 26 classes (the semester)

• Alice and Bob use the following protocol:

1.Alice invents a secret t

2.Alice gives Bob H26(t), where H26() is 26 repeated uses of H().

3.If she cancels class on day d, she gives H(26-D)(t) to Mallory, e.g.,

If cancels on day 1, she gives Mallory H25(t)

If cancels on day 2, she gives Mallory H24(t)

…….

If cancels on day 25, she gives Mallory H1(t)

If cancels on day 26, she gives Mallory t

4.If Alice does not cancel class, she does nothing

– If Bob receives the token t, he knows that Alice sent it
4

Hash Chain (cont.)
• Why is this protocol secure?

• On day d, H(26-d)(t) acts as an authenticated value
(authenticator) because Mallory could not create t without
inverting H() because for any Hk(t) she has k>(26-d)

• That is, Mallory potentially has access to the hash values for
all days prior to today, but that provides no information on
today’s value, as they are all post-images of today’s value

• Note: Mallory can again convince Bob that class is occurring
by not delivering H(26-d)(t)

• Chain of hash values are ordered authenticators

• Important that Bob got the original value H26(t) from
Alice directly (was provably authentic)

5

Basic truths of cryptography

• Cryptography is not frequently
the source of security
problems

• Algorithms are well known and
widely studied

• Vetted through crypto
community

• Avoid any “proprietary”
encryption

• Claims of “new technology” or
“perfect security” are almost
assuredly snake oil

7

Building systems with
cryptography

• Use quality libraries

• SSLeay, cryptolib, openssl

• Find out what cryptographers think of a
package before using it

• Code review like crazy

• Educate yourself on how to use library

• Understand caveats by original designer and
programmer

8Cipher.getInstance(“AES”) defaults to ECB mode!

Common pitfalls

• Generating randomness

• Storage of secret keys

• Virtual memory (pages
secrets onto disk)

• Protocol interactions

• Poor user interface

• Poor choice of parameters
or modes

9

Let’s review...

11

Private-key crypto is like a door lock

12

Why?

Encryption and Message
Authenticity

Alice BobEve

Src = Alice, Dest = Bob
Msg = Ek1{{“network security is fun”,
MACk2(“network security is fun!”)}}

13

Without knowing k2, Eve can’t compute a valid
MAC for her forged message.

Without knowing k1, Eve can’t read Alice’s message.

What’s the
hard part?

Public Key Crypto
(10,000 ft view)

14

• Separate keys for encryption and decryption

• Public key: anyone can know this

• Private key: kept confidential

• Anyone can encrypt a message to you using your
public key

• The private key (kept confidential) is required to
decrypt the communication

• Alice and Bob no longer have to have a priori shared a
secret key

Public Key Cryptography

• Each key pair consists of a public and
private component: k+ (public key), k-

(private key)

• Public keys are distributed (typically)
through public key certificates

• Anyone can communicate secretly with
you if they have your certificate

15

Dk�(Ek+(m)) = m

Modular Arithmetic
• Integers Zn = {0, 1, 2, ..., n-1}

• x mod n = remainder of x divided by n

• 5 mod 13 = 5

• 13 mod 5 = 3

• y is modular inverse of x iff xy mod n = 1

• 4 is inverse of 3 in Z11

• If n is prime, then Zn has modular inverses for all integers
except 0

16

Euler’s Totient Function
• coprime: having no common positive factors other than 1

(also called relatively prime)

• 16 and 25 are coprime

• 6 and 27 are not coprime

• Euler’s Totient Function: Φ(n) = number of integers less
than or equal to n that are coprime with n

where product ranges over distinct primes dividing n

• If m and n are coprime, then Φ(mn) = Φ(m)Φ(n)

• If m is prime, then Φ(m) = m - 1
17

Euler’s Totient Function

18

RSA
(Rivest, Shamir, Adelman)

• The dominant public key
algorithm
•The algorithm itself is

conceptually simple
•Why it is secure is very

deep (number theory)
•Uses properties of

exponentiation modulo a
product of large primes

"A method for obtaining Digital
Signatures and Public Key
Cryptosystems“, Communications of
the ACM, Feb. 1978.

19

RSA Key Generation

20

• Choose distinct primes p and q

• Compute n = pq

• Compute Φ(n) = Φ(pq)
= (p-1)(q-1) WHY?

• Randomly choose 1<e< Φ(pq)
such that e and Φ(pq) are
coprime. e is the public key
exponent

• Compute d=e-1 mod(Φ(pq)).
d is the private key
exponent

Example:

let p=3, q=11

n=33

Φ(pq)=(3-1)(11-1)=20

let e=7

ed mod Φ(pq) = 1

7d mod 20 = 1

d = 3

RSA Encryption/Decryption
• Public key k+ is {e,n} and private key k- is {d,n}

• Encryption and Decryption

Ek+(M) : ciphertext = plaintexte mod n

Dk-(ciphertext) : plaintext = ciphertextd mod n

• Example

• Public key (7,33), Private Key (3,33)

• Plaintext: 4

• E({7,33},4) = 47 mod 33 = 16384 mod 33 = 16

• D({3,33},16) = 163 mod 33 = 4096 mod 33 = 4

21

22

Is RSA Secure?
• {e,n} is public information

• If you could factor n into p*q, then

• could compute f(n) =(p-1)(q-1)

• could compute d = e-1 mod f(n)
•would know the private key <d,n>!

• But: factoring large integers is hard!

• classical problem worked on for centuries; no
known reliable, fast method

Why does it work?
• Difficult to find Φ(n) or d using only e and n.

• Finding d is equivalent in difficulty to factoring n as p*q

• No efficient integer factorization algorithm is known

• Example: Took 18 months to factor a 200 digit number into its 2
prime factors

• It is feasible to encrypt and decrypt because:

• It is possible to find large primes.

• It is possible to find coprimes and their inverses.

• Modular exponentiation is feasible.

23

24

Security (Cont’d)
• At present, key sizes of 2048 bits are

considered to be secure, but 4096 bits is better

• Tips for making n difficult to factor

1.p and q lengths should be similar (ex.: ~1000
bits each if key is 2048 bits)

2.both (p-1) and (q-1) should contain a “large”
prime factor

3.gcd(p-1, q-1) should be “small”
4.d should be larger than n1/4

25

Attacks Against RSA

• Brute force: try all possible private keys

• can be defeated by using a large enough key
space (e.g., 2048 bit keys or larger)

• Mathematical attacks

1.factor n (possible for special cases of n)
2.determine d directly from e, without

computing
f(n)

– at least as difficult as factoring n

26

Attacks (Cont’d)
• Probable-message attack (using {e,n})
• encrypt all possible plaintext messages
• try to find a match between the ciphertext and one of

the encrypted messages
• only works for small plaintext message sizes

• Solution: pad plaintext message with random text
before encryption

• PKCS #1 v1 specifies this padding format:

0002 R1 R2 R3 R4 R5 R6 R7 R8 data…00

each 8 bits long

27

Timing Attacks Against RSA

•Recovers the private key from the running time of the
decryption algorithm

•Computing m = cd mod n using repeated
squaring algorithm:

• m = 1;
• for i = k-1 downto 1

m = m*m mod n;
if di == 1

then m = m*c mod n;
• return m;

28

Power Analysis Against RSA

•Measure power consumption of the smart card while it
is doing decryption
•Look at the power spectrum to identify points where

more power was used.

30

Countermeasures to Timing
Attacks

1. Delay the result if the computation is too fast
• disadvantage: ?
2. Add a random delay
• disadvantage?
3. Blinding: multiply the ciphertext by a random number before

performing decryption

31

RSA’s Blinding Algorithm
• To confound timing attacks during decryption
1. generate a random number r between 0 and n–1 such

that gcd(r, n) = 1 (i.e., co-primes)
2. compute c’ = c * re mod n

3. compute m’ = (c’)d mod n
4. compute m = m’ * r –1 mod n

• Attacker will not know what the bits of c’ are
• Performance penalty: < 10% slowdown in

decryption speed

this is where
timing attack
would occur

