

CSCI 667: Concepts of Computer Security

Lecture 5

Prof.Adwait Nadkarni

Derived from slides by William Enck, Micah Sherr, Patrick McDaniel and Peng Ning

Using hashes as authenticators

- Consider the following scenario
 - Prof. Smart E. Pants has not decided if she will cancel the next lecture.
 - When she does decide, she communicates to Bob the student through Mallory, her evil TA.
 - She does not care if Bob shows up to a cancelled class, but she does not want students to not show up if the class hasn't been cancelled
 - Prof. Pants does not trust Mallory to deliver the message.
- Prof. Smart E. Pants and Bob use the following protocol:
 - Prof. Pants invents a secret t
 - Prof. Pants gives Bob h(t), where h() is a crypto hash function
 - If she cancels class, she gives t to Mallory to give to Bob
 - If does not cancel class, she does nothing
 - If Bob receives the token t, he knows that Prof. Pants sent it

Hash Authenticators

- Why is this protocol secure?
 - -t acts as an authenticated value (authenticator) because Mallory could not have produced t without inverting h()
 - -Note: Mallory can convince Bob that class is occurring when it is not by simply not delivering t (but we assume Bob is smart enough to come to that conclusion when the room is empty)
- Note that it is important that Bob gets the original value h(t) from Alice directly (was provably authentic)

Hash chain

- Now, consider the case where Alice wants to do the same protocol, only for all 26 classes (the semester)
- Alice and Bob use the following protocol:

I.Alice invents a secret t

2. Alice gives Bob $H^{26}(t)$, where $H^{26}()$ is 26 repeated uses of H().

3. If she cancels class on day d, she gives $H^{(26-D)}(t)$ to Mallory, e.g.,

```
If cancels on day I, she gives Mallory H^{25}(t)
```

If cancels on day 2, she gives Mallory $H^{24}(t)$

••••

If cancels on day 25, she gives Mallory $H^{1}(t)$

If cancels on day 26, she gives Mallory t

```
4. If Alice does not cancel class, she does nothing
```

- If Bob receives the token t, he knows that Alice sent it

Hash Chain (cont.)

- Why is this protocol secure?
 - On day d, H^(26-d)(t) acts as an authenticated value (authenticator) because Mallory could not create t without inverting H() because for any H^k(t) she has k>(26-d)
 - That is, Mallory potentially has access to the hash values for all days prior to today, but that provides no information on today's value, as they are all post-images of today's value
 - Note: Mallory can again convince Bob that class is occurring by not delivering H^(26-d)(t)
 - Chain of hash values are ordered authenticators
- Important that Bob got the original value H²⁶(t) from Alice directly (was provably authentic)

Basic truths of cryptography

- Cryptography is not frequently the source of security problems
 - Algorithms are well known and widely studied
 - Vetted through crypto community
 - Avoid any "proprietary" encryption
 - Claims of "new technology" or "perfect security" are almost assuredly snake oil

Building systems with cryptography

- Use quality libraries
 - SSLeay, cryptolib, openssl
 - Find out what cryptographers think of a package before using it
- Code review like crazy
- Educate yourself on how to use library
 - Understand caveats by original designer and programmer

Cipher.getInstance("AES") defaults to ECB mode!

Common pitfalls

- Generating randomness
- Storage of secret keys
- Virtual memory (pages secrets onto disk)
- Protocol interactions
- Poor user interface
- Poor choice of parameters or modes

Let's review...

Private-key crypto is like a door lock

Without knowing k1, Eve can't read Alice's message.

Without knowing *k2*, Eve can't compute a valid MAC for her forged message.

Public Key Crypto (10,000 ft view)

- Separate keys for encryption and decryption
 - Public key: anyone can know this
 - Private key: kept confidential
- Anyone can encrypt a message to you using your public key
- The private key (kept confidential) is required to decrypt the communication
- Alice and Bob no longer have to have a priori shared a secret key

Public Key Cryptography

 Each key pair consists of a public and private component: k⁺ (public key), k⁻ (private key)

$$D_{k^-}(E_{k^+}(m)) = m$$

- Public keys are distributed (typically) through public key certificates
 - Anyone can communicate secretly with you if they have your certificate

Modular Arithmetic

- Integers $Z_n = \{0, 1, 2, ..., n-1\}$
- x mod n = remainder of x divided by n
 - 5 mod | 3 = 5
 - 13 mod 5 = 3
- y is **modular inverse** of x iff xy mod n = 1
 - 4 is inverse of 3 in ZII
- If n is prime, then Z_n has modular inverses for all integers except 0

Euler's Totient Function

- coprime: having no common positive factors other than 1 (also called relatively prime)
 - 16 and 25 are coprime
 - 6 and 27 are not coprime
- Euler's Totient Function: $\Phi(n)$ = number of integers less than or equal to n that are coprime with n

$$\Phi(n) = n \cdot \prod_{p|n} (1 - rac{1}{p})$$

where product ranges over distinct primes dividing n

• If m and n are coprime, then $\Phi(mn) = \Phi(m)\Phi(n)$

• If m is prime, then $\Phi(m) = m - I$

Euler's Totient Function

$$\Phi(n) = n \cdot \prod_{p|n} (1 - \frac{1}{p})$$

$$\Phi(18) = \Phi(3^2 \cdot 2^1) = 18\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{2}\right) = 6$$

RSA

(Rivest, Shamir, Adelman)

- The dominant public key algorithm
 - The algorithm itself is conceptually simple
 - Why it is secure is very deep (number theory)
 - Uses properties of exponentiation modulo a product of large primes

"A method for obtaining Digital Signatures and Public Key Cryptosystems", Communications of the ACM, Feb. 1978.

RSA Key Generation

- Choose distinct primes p and q
- Compute n = pq
- Compute Φ(n) = Φ(pq)
 = (p-1)(q-1) WHY?
- Randomly choose I <e< Φ(pq) such that e and Φ(pq) are coprime. e is the **public key exponent**
- Compute d=e⁻¹ mod(Φ(pq)).
 d is the private key
 exponent

Example: let p=3, q=11 n=33 $\Phi(pq)=(3-1)(11-1)=20$ let e=7 ed mod $\Phi(pq) = 1$ $7d \mod 20 = 1$ d = 3

RSA Encryption/Decryption

- Public key k⁺ is {e,n} and private key k⁻ is {d,n}
- Encryption and Decryption

 $E_{k+}(M)$: ciphertext = plaintext^e mod n

 D_{k} (ciphertext) : plaintext = ciphertext^d mod n

- Example
 - Public key (7,33), Private Key (3,33)
 - Plaintext: 4
 - $E({7,33},4) = 4^7 \mod 33 = 16384 \mod 33 = 16$
 - $D({3,33}, 16) = 16^3 \mod 33 = 4096 \mod 33 = 4$

Is RSA Secure?

- {e,n} is public information
- If you could factor *n* into p^*q , then
 - could compute $\phi(n) = (p-1)(q-1)$
 - could compute $d = e^{-1} \mod \phi(n)$
 - would know the private key <d,n>!
- But: factoring large integers is hard!
 - classical problem worked on for centuries; no known reliable, fast method

Why does it work?

- Difficult to find $\Phi(n)$ or d using only e and n.
- Finding d is equivalent in difficulty to factoring n as p*q
 - No efficient integer factorization algorithm is known
 - Example: Took 18 months to factor a 200 digit number into its 2 prime factors
- It is feasible to encrypt and decrypt because:
 - It is possible to find large primes.
 - It is possible to find coprimes and their inverses.
 - Modular exponentiation is feasible.

Security (Cont'd)

- At present, key sizes of 2048 bits are considered to be secure, but 4096 bits is better
 - Tips for making *n* difficult to factor
 - p and q lengths should be similar (ex.: ~1000 bits each if key is 2048 bits)
 - **2.**both (*p*-1) and (*q*-1) should contain a "large" prime factor
 - **3.**gcd(p-1, q-1) should be "small"
 - **4.** *d* should be larger than $n^{1/4}$

Attacks Against RSA

- Brute force: try all possible private keys
 - can be defeated by using a large enough key space (e.g., 2048 bit keys or larger)
- Mathematical attacks I factor *n* (possible for special cases of n) 2.determine *d* directly from *e*, without computing $\phi(n)$
 - —at least as difficult as factoring *n*

Attacks (Cont'd)

- Probable-message attack (using {e,n})
 - encrypt all possible plaintext messages
 - try to find a match between the ciphertext and one of the encrypted messages
 - only works for small plaintext message sizes
- Solution: pad plaintext message with random text before encryption
- PKCS #1 v1 specifies this padding format:

Timing Attacks Against RSA

- Recovers the private key from the running time of the decryption algorithm
- Computing m = c^d mod n using repeated squaring algorithm:

Power Analysis Against RSA

- •Measure power consumption of the smart card while it is doing decryption
- •Look at the power spectrum to identify points where more power was used.

Countermeasures to Timing Attacks

- Delay the result if the computation is too fast
 - disadvantage: ?
- 2. Add a random delay
 - disadvantage?
- **3.** Blinding: multiply the ciphertext by a random number before performing decryption

RSA's Blinding Algorithm

- To confound timing attacks during decryption
 - . generate a random number r between 0 and n-1 such that gcd(r, n) = 1 (i.e., co-primes)
 - 2. compute $\mathbf{c'} = \mathbf{c} * r^{\mathbf{e}} \mod n$ 3. compute $\mathbf{m'} = (\mathbf{c'})^{\mathbf{d}} \mod n$ 4. compute $\mathbf{m} = \mathbf{m'} * r^{-1} \mod n$

- Attacker will not know what the bits of **c'** are
- Performance penalty: < 10% slowdown in decryption speed