
CSCI 667:
Concepts of Computer

Security

Lecture 4.b

Prof. Adwait Nadkarni

1Derived from slides by William Enck, Micah Sherr, Patrick McDaniel, and Peng Ning

What encryption
does and does not

• Does:

• confidentiality

• Doesn’t do:

• data integrity

• source authentication

• Need: ensure that data is not altered and is
from an authenticated source

2

Principals

Alice Bob

Eve

3

Src=Alice, Dest=Bob
Msg = “computer security is fun!”

Man-in-the-Middle (MitM) attack

Alice BobEve

4

Src=Alice, Dest=Bob
Msg = “computer security is fun!”

Src=Alice, Dest=Bob
Msg = “computer security is not fun!”

Message Authentication Codes
(MACs)

6

• MACs provide message integrity and authenticity

• MACK(M) – use symmetric encryption to produce short
sequence of bits that depends on both the message (M) and
the key (K)

• MACs should be resistant to existential forgery: Eve should
not be able to produce a valid MAC for a message M' without
knowing K

• To provide confidentiality, authenticity, and integrity of a message,
Alice sends

• EK(M,MACK(M)) where EK(X) is the encryption of X using key K

• Proves that M was encrypted (confidentiality and integrity) by
someone who knew K (authenticity)

Message Authenticity

Alice BobEve

Src = Alice, Dest = Bob
Msg = {“computer security is fun”,
MACk(“computer security is fun!”)}

7

Src = Alice, Dest = Bob
Msg = {“computer security isn’t
fun!”, ???}

Without knowledge of k, Eve can’t compute a valid
MAC for her forged message!

Encryption and Message
Authenticity

Alice BobEve

Src = Alice, Dest = Bob
Msg = Ek1{{“network security is fun”,
MACk2(“network security is fun!”)}}

8

Without knowing k2, Eve can’t compute a valid
MAC for her forged message!

Without knowing k1,
Eve can’t read Alice’s message.

Cryptographic Hash
Functions

• Hash function h: deterministic one-way function
that takes as input an arbitrary message M (sometimes
called a preimage) and returns as output h(M), a small
fixed length hash (sometimes called a digest)

• Hash functions should have the following two
properties:

• compression: reduces arbitrary length string to fixed
length hash

• ease of computation: given message M, h(M) is easy to
compute

9

Hash functions are usually fairly inexpensive
(i.e., compared with public key cryptography)

10

adwait$ openssl speed sha
To get the most accurate results, try to run this
program when this computer is idle.
Doing sha1 for 3s on 16 size blocks: 9255072 sha1's in 2.97s
Doing sha1 for 3s on 64 size blocks: 6687775 sha1's in 2.97s
Doing sha1 for 3s on 256 size blocks: 3570692 sha1's in 2.98s
Doing sha1 for 3s on 1024 size blocks: 1234275 sha1's in 2.97s
Doing sha1 for 3s on 8192 size blocks: 174704 sha1's in 2.97s
Doing sha256 for 3s on 16 size blocks: 6374888 sha256's in 2.98s
Doing sha256 for 3s on 64 size blocks: 3926000 sha256's in 2.98s
Doing sha256 for 3s on 256 size blocks: 1697500 sha256's in 2.98s
Doing sha256 for 3s on 1024 size blocks: 532592 sha256's in 2.97s
Doing sha256 for 3s on 8192 size blocks: 72132 sha256's in 2.97s
Doing sha512 for 3s on 16 size blocks: 4913872 sha512's in 2.97s
Doing sha512 for 3s on 64 size blocks: 4915170 sha512's in 2.97s
Doing sha512 for 3s on 256 size blocks: 2160195 sha512's in 2.97s
Doing sha512 for 3s on 1024 size blocks: 795869 sha512's in 2.97s
Doing sha512 for 3s on 8192 size blocks: 113596 sha512's in 2.97s
OpenSSL 0.9.8zh 14 Jan 2016
built on: Jan 23 2017
options:bn(64,64) md2(int) rc4(ptr,char) des(idx,cisc,16,int) aes(partial) blowfish(idx)
compiler: -arch x86_64 -fmessage-length=0 -pipe -Wno-trigraphs -fpascal-strings -fasm-blocks -O3 -
D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -DL_ENDIAN -DMD32_REG_T=int -DOPENSSL_NO_IDEA -DOPENSSL_PIC
DOPENSSL_THREADS -DZLIB -mmacosx-version-min=10.6
available timing options: TIMEB USE_TOD HZ=100 [sysconf value]
timing function used: getrusage
The 'numbers' are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
sha1 49891.95k 144024.59k 307178.70k 425012.39k 482007.81k
sha256 34281.92k 84424.15k 146042.36k 183727.34k 198842.41k
sha512 26445.57k 105956.90k 186126.06k 274305.03k 313698.39k

Why might hashes be
useful?

• Message authentication codes (MACs):
• e.g.: MACK(M) = h(K|M)

(but don't do this, use HMAC instead)

• Modification detection codes:
• detect modification of data

• any change in data will cause change in hash

11

Prof. Pedantic proposes the following
hash function, arguing that it offers both
compression and ease of computation.

Why is this a lousy crypto hash function?

• h(M) = 0 if the number of 0s in M is divisible
by 3

• h(M) = 1 otherwise

12

Cryptographic Hash
Functions

• Properties of good cryptographic hash functions:

• preimage resistance: given digest y, computationally
infeasible to find preimage x' such that h(x')=y
(also called “one-way property”)

• 2nd-preimage resistance: given preimage x,
computationally infeasible to find preimage x' such that
h(x)=h(x')
(also called “weak collision resistance”)

• collision resistance: computationally infeasible to find
preimages i,j such that h(i)=h(j)
(also called “strong collision resistance”)

13

Birthday Attack
• Birthday Paradox: chances that 2+ people

share birthday in group of 23 is > 50%.

• General formulation
• function f() whose output is uniformly distributed over H

possible outputs

• Number of experiments Q(H) until we find a collision is
approximately:

• E.g.,

• Why is this relevant to hash sizes?
14See: https://betterexplained.com/articles/understanding-the-birthday-paradox/

https://betterexplained.com/articles/understanding-the-birthday-paradox/

Practical
Implications
• Choosing two messages

that have the same hash
h(x) = h(x’) is more
practical than you might
think.
• Example attack: secretary

is asked to write a “bad”
letter, but wants to
replace with a “good”
letter.
• Boss signs the letter

after reading

15

Dear Anthony,

!
"
#

$
%
&This letter is

I am writing to introduce !"
#

$
%
&you to

to you !"
#

$
%
&Mr.

-- Alfred !"
#

$
%
&P.

--

Barton, the !"
#

$
%
&new

newly appointed !"
#

$
%
&chief

senior jewellery buyer for !"
#

$
%
&our

the

Northern !"
#

$
%
&European

Europe !"
#

$
%
&area

division . He!"
#

$
%
&will take

has taken over !"
#

$
%
&the

--

responsibility for !"
#

$
%
&all

the whole of our interests in !"
#

$
%
&watches and jewellery

jewellery and watches

in the !"
#

$
%
&area

region . Please !"
#

$
%
&afford

give him !"
#

$
%
&every

all the help he !"
#

$
%
&may need

needs

to !"
#

$
%
&seek out

find the most !"
#

$
%
&modern

up to date lines for the !"
#

$
%
&top

high end of the

market. He is !"
#

$
%
&empowered

authorized to receive on our behalf !"
#

$
%
&samples

specimens of the

!
"
#

$
%
&latest

newest !"
#

$
%
&watch and jewellery

jewellery and watch products, !"
#

$
%
&up

subject to a !"
#

$
%
&limit

maximum

of ten thousand dollars. He will !"
#

$
%
&carry

hold a signed copy of this !"
#

$
%
&letter

document

as proof of identity. An order with his signature, which is !"
#

$
%
&appended

attached

!
"
#

$
%
&authorizes

allows you to charge the cost to this company at the !"
#

$
%
&above

head office

address. We !"
#

$
%
&fully

-- expect that our !"
#

$
%
&level

volume of orders will increase in

the !"
#

$
%
&following

next year and !"
#

$
%
&trust

hope that the new appointment will !"
#

$
%
&be

prove

!
"
#

$
%
&advantageous

an advantage to both our companies.

Figure 11.7 A Letter in 237 Variations

(from Stallings, Crypto and Net Security)

Some common cryptographic
hash functions

• MD5 (128-bit digest) [don’t use this]

• SHA-1 (160-bit digest) [don’t use this]

• SHA-256 (256-bit digest) [stop using this*]

• SHA-512 (512-bit digest) [stop using this*]

• SHA-3 [recent competition winner]

16

General Structure of Hash

17

f fn n
n

IV =
CV0 CV1

b

n

CVL–1

CVLn

b

Y0 Y1 YL–1

IV = Initial value
CVi = chaining variable
Yi = ith input block
f = compression algorithm

L = number of input blocks
n = length of hash code
b = length of input block

Figure 11.8 General Structure of Secure Hash Code

b

f

(from Stallings, Crypto and Net Security)

Comparison of SHA
Parameters

18

 SHA-1 SHA-224 SHA-256 SHA-384 SHA-512
Message
Digest Size

160 224 256 384 512

Message Size < 264 < 264 < 264 < 2128 < 2128
Block Size 512 512 512 1024 1024

Word Size 32 32 32 64 64
Number of
Steps

80 64 64 80 80

Note: All sizes are measured in bits.

(from Stallings, Crypto and Net Security)

SHA-512

19

N 1024 bits

Figure 11.9 Message Digest Generation Using SHA-512

M1

H1

M2 MN

F

IV = H0

Message

hash code

1024 bits

512 bits 512 bits 512 bits

1024 bits 1024 bits

L bits

L

128 bits

1000000 . . . 0

+

H2

F

+

HN

F

+

+ = word-by-word addition mod 264

(from Stallings, Crypto and Net Security)

SHA-512 Function

20

64

Hi–1

Hi

Mi

W0 K0

a b c

Round 0

d e f g h

Wt Kt
a b c

Round t

d e f g h

message
schedule

Figure 11.10 SHA-512 Processing of a Single 1024-Bit Block

W79 K79

a b c

Round 79

d e f g h

+ + + + + + + ++ + + + + + +

(from Stallings, Crypto and Net Security)

Message Extension Attack

• Why is MACk(M) = H(k|M) bad?
• How can Eve append M’ to M?
• Goal: compute H(k|M|M’) without knowing k

• Solution: Use H(k|M) as IV for next f iteration in H()

22

A Better MAC
• Objectives
• Use available hash functions without modification
• Easily replace embedded hash function as more secure

ones are found
• Preserve original performance of hash function
• Easy to use

23

HMAC

• HMAC(k,M) =
H(k⊕opad || H(k⊕ipad || M))

• Attacker cannot extend MAC
as before

• Prove it to yourself

24

Y0Si

So

Y1 YL–1

b bits

b bits

b bits b bits

5

 ipad

5

K+

K+

opad

HashIV n bits

n bits

pad to b bits

HashIV n bits

n bits

HMAC(K, M)

H(Si || M)

Figure 12.5 HMAC Structure

(from Stallings, Crypto and Net Security)

= 0x363636…

= 0x5C5C5C…

Using hashes as
authenticators

• Consider the following scenario

• Prof. Smart E. Pants has not decided if she will cancel the next lecture.

• When she does decide, she communicates to Bob the student through Mallory, her evil TA.

• She does not care if Bob shows up to a cancelled class, but she does not want students to
not show up if the class hasn’t been cancelled

• Prof. Pants does not trust Mallory to deliver the message.

• Prof. Smart E. Pants and Bob use the following protocol:

• Prof. Pants invents a secret t

• Prof. Pants gives Bob h(t), where h() is a crypto hash function

• If she cancels class, she gives t to Mallory to give to Bob

• If does not cancel class, she does nothing

• If Bob receives the token t, he knows that Prof. Pants sent it

25

Hash Authenticators
• Why is this protocol secure?

–t acts as an authenticated value (authenticator) because
Mallory could not have produced t without inverting h()

–Note: Mallory can convince Bob that class is occurring when
it is not by simply not delivering t (but we assume Bob is
smart enough to come to that conclusion when the room is
empty)

• Note that it is important that Bob gets the original value h(t)
from Alice directly (was provably authentic)

26

Hash chain
• Now, consider the case where Alice wants to do the same protocol,

only for all 26 classes (the semester)

• Alice and Bob use the following protocol:

1.Alice invents a secret t

2.Alice gives Bob H26(t), where H26() is 26 repeated uses of H().

3.If she cancels class on day d, she gives H(26-D)(t) to Mallory, e.g.,

If cancels on day 1, she gives Mallory H25(t)

If cancels on day 2, she gives Mallory H24(t)

…….

If cancels on day 25, she gives Mallory H1(t)

If cancels on day 26, she gives Mallory t

4.If Alice does not cancel class, she does nothing

– If Bob receives the token t, he knows that Alice sent it
27

Hash Chain (cont.)
• Why is this protocol secure?

• On day d, H(26-d)(t) acts as an authenticated value
(authenticator) because Mallory could not create t without
inverting H() because for any Hk(t) she has k>(26-d)

• That is, Mallory potentially has access to the hash values for
all days prior to today, but that provides no information on
today’s value, as they are all post-images of today’s value

• Note: Mallory can again convince Bob that class is occurring
by not delivering H(26-d)(t)

• Chain of hash values are ordered authenticators

• Important that Bob got the original value H26(t) from
Alice directly (was provably authentic)

28

PRNG using Hashes

• Hash functions can also be used to
build pseudorandom number
generator (PRNGs) for generating
a stream of pseudo random bits
• Two uses:
• Create random values: Seed

should only be known to the
user
• Stream encryption: Seed known

to sender and receiver

29

Figure 12.14 Basic Structure of Hash-Based PRNGs (SP 800-90)

(a) PRNG using cryptographic hash function

(b) PRNG using HMAC

V

K

Cryptographic
 hash function

Pseudorandom
output

+1

V

HMAC

Pseudorandom
output

(from Stallings, Crypto and Net Security)

Basic truths of cryptography

• Cryptography is not frequently
the source of security
problems

• Algorithms are well known and
widely studied

• Vetted through crypto
community

• Avoid any “proprietary”
encryption

• Claims of “new technology” or
“perfect security” are almost
assuredly snake oil

30

Building systems with
cryptography

• Use quality libraries

• SSLeay, cryptolib, openssl

• Find out what cryptographers think of a
package before using it

• Code review like crazy

• Educate yourself on how to use library

• Understand caveats by original designer and
programmer

31Cipher.getInstance(“AES”) defaults to ECB mode!

Common pitfalls

• Generating randomness

• Storage of secret keys

• Virtual memory (pages
secrets onto disk)

• Protocol interactions

• Poor user interface

• Poor choice of parameters
or modes

32

