
CSCI 445:
Mobile Application Security

Lecture 21

Prof. Adwait Nadkarni

1Derived from slides by William Enck

Announcements
• Will release HW5 today
• Project presentations and final review split across 2 lectures?

• Lots of interest, need to give each team sufficient time to
present + for questions
• Spreads the questions regarding the finals out too

• Ask for an extension for Milestone 4 if you need one

2

How do we learn about
and study malware?

4

Honeypots: what
• Honeypot: a controlled

environment constructed to
trick malware into thinking it is
running in an unprotected
system

• collection of decoy services
(fake mail, web, ftp, etc.)

• decoys often mimic behavior
of unpatched and vulnerable
services

5

Example Honeypot Workflow

6

Start

Create
honeypot
services

Malware
attacks service

Honeypot
mimics vulnerable
service

Analyst
inspects
malware

Reset
honeypot

Honeypots: why
• Three main uses:

• forensic analysis: better understand how malware works; collect
evidence for future legal proceedings

• risk mitigation:

• provide “low-hanging fruit” to distract attacker while
safeguarding the actually important services

• tarpits: provide very slow service to slow down the attacker

• malware detection: examine behavior of incoming request in
order to classify it as benign or malicious

7

Honeypots: types
• Two main types:

• Low-interaction: emulated services (e.g., a script)

• inexpensive

• may be easier to detect

• High-interaction: no emulation; honeypot maintained
inside of real OS

• expensive

• good realism

• But not too real à bad form to actually help
propagate the worm (legal risks!)

8

honeyd

• Open-source virtual honeynet
• creates virtual hosts on network
• services actually run on a single host
• scriptable services

9

honeyd example:
FTP service (ftp.sh)

1
0

echo "$DATE: FTP started from $1 Port $2" >> $log
echo -e "220 $host.$domain FTP server (Version wu-2.6.0(5) $DATE) ready."
...
case $incmd_nocase in

QUIT*)
echo -e "221 Goodbye.\r"
exit 0;;

SYST*)
echo -e "215 UNIX Type: L8\r"
;;

HELP*)
echo -e "214-The following commands are recognized (* =>'s unimplemented).\r"
echo -e " USER PORT STOR MSAM* RNTO NLST MKD CDUP\r"
echo -e " PASS PASV APPE MRSQ* ABOR SITE XMKD XCUP\r"
echo -e " ACCT* TYPE MLFL* MRCP* DELE SYST RMD STOU\r"
echo -e " SMNT* STRU MAIL* ALLO CWD STAT XRMD SIZE\r"
echo -e " REIN* MODE MSND* REST XCWD HELP PWD MDTM\r"
echo -e " QUIT RETR MSOM* RNFR LIST NOOP XPWD\r"
echo -e "214 Direct comments to ftp@$domain.\r"
;;

11

• Trace system calls:
• most OSes support method to trace sequence of system

calls

• e.g., ptrace, strace, etc.

• Or, monitor API calls (recall: hooks in ASM, TaintDroid)

• all “interesting” behavior (e.g., networking, file I/O, etc.)
must go through system calls

• capturing sequence of system calls (plus their arguments)
reveals useful info about malware’s behavior

• Question: Can Antiviruses do this on smartphones?

Examining Malware

Tracing System Calls

12

% strace ls
open("/proc/filesystems", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0444, st_size=0, ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f88345a4000
read(3, "nodev\tsysfs\nnodev\trootfs\nnodev\tb"..., 1024) = 346
read(3, "", 1024) = 0
close(3) = 0
munmap(0x7f88345a4000, 4096) = 0
open("/usr/lib/locale/locale-archive", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=2772576, ...}) = 0
mmap(NULL, 2772576, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f88330f9000
close(3) = 0
ioctl(1, SNDCTL_TMR_TIMEBASE or TCGETS, {B38400 opost isig icanon echo ...}) = 0
ioctl(1, TIOCGWINSZ, {ws_row=24, ws_col=80, ws_xpixel=0, ws_ypixel=0}) = 0
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3
fcntl(3, F_GETFD) = 0x1 (flags FD_CLOEXEC)
getdents(3, /* 36 entries */, 32768) = 1104
getdents(3, /* 0 entries */, 32768) = 0
close(3) = 0
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 1), ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f88345a4000
write(1, "mail R shared tmp work\n", 27) = 27
close(1) = 0
munmap(0x7f88345a4000, 4096) = 0
close(2) = 0
exit_group(0) = ?

13

• Observe filesystem changes and
network IO:

• “diff” the filesystem before and after

• which files are the malware reading/writing?

• capture network packets

• to whom is the malware communicating

Examining Malware

Challenges

• Honeypot must resemble actual machine

• simulate actual services (Apache, MySQL, etc.)
• but not too much... bad form to actually help

propagate the worm (legal risks!)

• Some worms do a reasonably good job of
detecting honeypots

14

Virtual Machines

15

Virtual Machines

Virtual Machines
• Virtual machine: isolated virtual hardware running within a

single operating system

• i.e., a software implementation of hardware

• usually provides emulated hardware which runs OS and other
applications

• i.e., a computer inside of a computer

• What’s the point?

• extreme software isolation -- programs can’t easily interfere with
one another if they run on separate machines

• much better hardware utilization than with separate machines

• power savings

• easy migration -- no downtime for hardware
repairs/improvements

16

Honeypots and Virtual Machines

17

• Most virtual machines provide checkpointing features

• Checkpoint (also called snapshot) consists of all VM state
(disk, memory, etc.)

• In normal VM usage, user periodically creates snapshots before
making major changes

• Rolling back (“restoring”) to snapshot is fairly inexpensive

• Checkpointing features are very useful for honeypots

• Let malware do its damage

• Pause VM and safely inspect damage from virtual machine monitor

• To reset state, simply restore back to the checkpoint

Honeypots and Virtual Machines

18

• Virtual Machines are also very useful for analyzing
malware (can debug malware):
• execute malware one instruction at a time
• pause malware
• easily detect effects of malware by looking at

“diffs” between current state and last snapshot
• execute malware on one VM and uninfected

software on another; compare state

Recall: Evasive Malware
• Lots of research into detecting when you’re in a virtual

machine (i.e., to prevent dynamic analysis)

• examine hardware drivers

• time certain operations

• look at ISA support

• Malware does this too!

• if not in VM, wreak havoc

• if in VM, self-destruct

• So, to be malware-free, why not run your host in a virtualized
environment?

19

Detecting Mobile Malware

20

Traditional detection systems?
• Can we use antivirus software built for desktops?

• Android/iOS malware is increasingly mobile-specific
• Important to understand the attacker’s goals and abilities

• Stealing private information
• Costing money (e.g., premium messages)

• Remote control
• ...

• In many cases, no exploits, simple permission misuse
• We need techniques that detect traditional malware (e.g.,

rootkits), and also tailored techniques for smartphones.
21

Attack Vectors
• Comprehensive characterization: Zhou and Jiang [1]

• How does malware get on our devices?
• Mostly using social engineering

• Malware relies on the user to initiate installation
1. Repackaging

a. All at once
b. Runtime download of payload

2. Drive-by download

22

[1] Zhou, Yajin, and Xuxian Jiang. "Dissecting android malware: Characterization and evolution."
In Security and Privacy (SP), 2012 IEEE Symposium on, pp. 95-109. IEEE, 2012.

Repackaged Malware

23

Download
legitimate app

Unpack app

Add malicious
payload

Repack and
Publish App

• Where is it published?

• Third-party stores (generally)
• Official Stores (e.g., Google Play)

1. To find repackaged apps in third-
party stores

i. Look for an app with the same
package name as an official app

ii. Static/dynamic analysis: Is the
difference benign?

General Approach

Repackaged Malware

24

Download
legitimate app

Unpack app

Add malicious
payload

Repack and
Publish App

• Where is it published?

• Third-party stores (generally)
• Official Stores (e.g., Google Play)

2. To find repackaged apps on Google
Play

i. Can’t use package names: package
names are unique!

ii. Detect similarity using metadata

General Approach

Automated similarity
analysis using metadata

25

• Text analytics (e.g., bag of
words)
• Titles, descriptions,

developer names (in
that order)

• Fuzzy image matching:
• icons

• Effective for detecting grayware

• May also help detect retargeted malware (e.g., free
repackaged versions of paid apps)

Andow, Benjamin, Adwait Nadkarni, Blake Bassett, William Enck, and Tao Xie. "A study of grayware on google play." In Security and
Privacy Workshops (SPW), 2016 IEEE, pp. 224-233. IEEE, 2016.

Malware Detection in Practice
• Target mobile-specific objectives:
• Privilege Escalation: Generally, gain root privilege
•Execute one or more root exploits

•Many exploits are publicly available! (e.g., towelroot)

• Remote Control: Botnets!

• Charging users: Premium messages, phone calls
• Stealing private data

• ...

26

https://towelroot.com/

• Know the limitations of analysis
• Malware often hides behavior to evade static analysis
•Code obfuscation

•Encrypting code/ root exploits
•Storing it as an asset

•Dynamically updating the malicious app
• JNI

• Problem: Some of these behaviors are also exhibited by
benign apps!

27

Malware Detection in Practice

• Boils down to a classification problem

• Typical approach:

1. Select interesting features/feature-types

2. Train with known malware/benign apps: Use
lightweight static analysis to extract features

3. Use machine learning on feature vectors to classify as
benign or malicious

4. Test on unlabeled samples

• VirusTotal: Aggregates results from over 70 virus
scanners (most of these are signature based)

28

Malware Detection in Practice

https://www.virustotal.com/

Feature Selection
1. AndroidManifest.xml:
• Requested permissions: Sensors, sensitive/private API

• App components
• Intent Filters

2. Disassembled code: Sensitive API calls
• APIs for which permissions have not been requested. Why?

• Sign of potential privilege escalation

• Permissions actually used
• Suspicious APIs: get IMEI, dynamic code loading

• URLs/host names for network communication. Why?
•Attributing/ connecting malware samples

29

Advantages
• Automated

• Explainable (sometimes; e.g., DREBIN)
• It generalizes: Why is this important?

• Need to detect variations of malware
• More robust against typical evasive maneuvers

(e.g., dynamic code loading, obfuscation, etc.)

•Relies on a diverse array of features

30

Limitations
• Craft adversarial examples: Make changes that evade

detection, but without changing behavior

1. Adversary has your model
2. Adversary does not have model, but, can

query for malicious/benign, and confidence score

3. Adversary can query for malicious/benign
• How to get labeled data?: like everyone does

• Query VirusTotal! (or specific scanners you want to evade)
• Is #3 feasible?: Train a neural network on this labeled

dataset.

• Key property: Transferability: If an adversarial sample evades my
model, it will also evade other similar models

31

Difficulty for
the
adversary

The End

32

