RRRRRRRRRRRR

CSCI 445:
Mobile Application Security

Prof. Adwait Nadkarni

Derived from slides by William Enck

Project Presentations

On April 30th

These are “status”

presentations of /-15 mins

duration (depending on # groups) Your Undeniable
® RQs Theory goes here

® Analysis you are doing

® Findings (optional)

® Anticipated Results and
Findings

| — 5 bonus credits

Let me know by April 181, e,
Thursday

Worms

® A worm is a self-propagating program that:
| .Exploits some vulnerability on a target host
2.(often) embeds itself into a host ...
3.Searches for other vulnerable hosts ...
4.Goto step |

The Danger

® What makes worms so dangerous is that infection grows at an
exponential rate

® A simple model:
* S (search) is the time it takes to find vulnerable host
* | (infect) is the time is take to infect a host

® Assume that t=0 is the worm outbreak, the number of hosts
at t=| is

2 (il (s+))

The result

5,000,000,000

4,500,000,000

4,000,000,000

3,500,000,000

3,000,000,000

2,500,000,000

2,000,000,000

1,500,000,000

1,000,000,000

500,000,000

The Morris Worm

The Morris Internet Worm
source code

1m“um~um« souce code of the Morris Interoet

i

This thavy, P9-line program brompght lurge paoces of
e Fateriiet s o standetil) on Novernber 2md, 1988

m-wmhlwuumllmmmmmuh
Ltaenet b sprend

Pl Conmaguaten Dty Mo

Robert Morris

® 1988: Graduate student at Cornell University

Son of Robert Morris, chief scientist at

National Computer Security Center (division
of NSA)

Now a professor at MIT

November 2nd, 1988

® 6pm: someone ran a program at a computer at
MIT

® The program collected host, network, and user

info...

® ...and then spread to other machines running

Sun 3,VAX, and some BSD variants

® ...rinse and repeat

November 2nd, 1988

® Computers became multiply infected
® Systems became overloaded with processes

® Swap space became exhausted, and machines
failed

® Wednesday night: UC Berkeley captures copy of
program

® 5AM Thursday: UC Berkeley builds sendmail
patch to stop spread of worm

® Difficult to spread knowledge of fix

® Not coincidentally, the Internet was
running slow

® Estimated at around 6,000 machines (~10% of
Internet) infected at cost of $10M-$100M

Morris VWorm: Attack Vectors

rsh: terminal client with network (IP)-based
authentication

fingerd: used gets call without bounds checking

sendmail: DEBUG mode allows remote user to
run commands

® lots of sendmail daemons running in DEBUG
mode (on by default)

Morris VWorm: Propagation

® Worm would ask host if it was infected

® If answer was no, worm would infect

® If answer was yes, worm would infect with some small

probability (to thwart trivial countermeasure)

® But... bug allowed worm to spread much faster than
anticipated, infecting the same machines multiple times

® Lesson: Always thoroughly debug your worms.

Code Red - 2001

® Exploited a Microsoft IIS web-server buffer overflow
® Scans for vulnerabilities over random IP addresses
® Sometimes would deface the compromised website
® Initial outbreak on July 16th, 2001

® version |: contained bad randomness (fixed IPs searched)

® version 2:fixed the randomness,
® added DDoS of www.whitehouse.gov

® Turned itself off and on (on Ist and |9th of month, attack 20-27th,
dormant 28-3|st)

® August 4 - Code Red I
® Different code base, same exploit

® Added local scanning (biased randomness to local IPs)

® Killed itself in October of 2001

Stuxnet

® First reported June 2010
® Exploited unknown vulnerabilities
® Not one zero-day
® Not two zero-days
® Not three zero-days
® But four zero-days!
® print spooler bug

® handful of escalation-of-privilege vulnerabilities

Stuxnet

® Spread through infected USB drives
® bypasses “air gaps”

® Worm actively targeted SCADA systems (i.e., industrial control
systems)

® looked for WINCC or PCS 7 SCADA management system

® attempted 0-day exploit

® also tried using default passwords

® apparently, specifically targeted Iran’s nuclear architecture

Stuxnet

® Once SCADA system compromised, worm

attempts to reprogram Programmable Logic
Controllers (PLCs)

® Forensics aggravated by lack of logging in SCADA
systems

Worms and infection

® The effectiveness of a worm is determined by how good it is
at identifying vulnerable machines

® Multi-vector worms use lots of ways to infect: e.g., network, email, drive by
downloads, etc.
® Example scanning strategies:

® Random IP: select random IPs; wastes a lot of time scanning “dark” or
unreachable addresses (e.g., Code Red)

® Signpost scanning: use info on local host to find new targets (e.g., Morris)

® Local scanning: biased randomness

® Permutation scanning: “hitlist” based on shared pseudorandom sequence;
when victim is already infected, infected node chooses new random position

within sequence

Other scanning strategies

® The doomsday worm:a flash worm
® Create a hit list of all vulnerable hosts

® Staniford et al. argue this is feasible
® Would contain a 48MB list

® Do the infect and split approach

® Use a zero-day exploit

oooooooooo

® Result: saturate the Internet is less than 30 seconds!

21

Worms: Defense Strategies

® (Auto) patch your systems: most large worm outbreaks have
exploited known vulnerabilities (Stuxnet is an exception)

® Heterogeneity: use more than one vendor for your networks

® IDS: provides filtering for known vulnerabilities, such that they
are protected immediately (analog to virus scanning)

FirewaII:/ Network
‘ IDS Traffic
Network I|l1terface
Operating ><
System

® Filtering: look for unnecessary or unusual communication
patterns, then drop them on the floor

22

Denial-of-Service
(DoS)

Denial-of-Service (DoS)

® Intentional prevention of access to valued resource
® CPU, memory, disk (system resources)
® DNS, print queues, NIS (services)
® Web server, database, media server (applications)
® This is an attack on availability
® Launching DoS attacks is easy

® Preventing DoS attacks is very hard

Canonical DoS - Request Flood

® Overwhelm some
resource with
requests

® e.g., web-server,
phone system

® Most effective
when processing
request is
expensive

25

Smurf
Attacks

Example: SMURF Attacks

® Simple DoS attack:

® Send a large number PING packets to a network’s broadcast IP
addresses (e.g., 192.168.27.254)

® Set the source packet IP address to be your victim
® All hosts will reflexively respond to the ping at your victim
°

... and it will be crushed under the load.

® This is an amplification attack and a reflection attack

adversary

27

Distributed Denial-of-service (DDoS)

® DDoS: Network oriented attacks aimed at preventing access
to network, host or service

® Saturate the target’s network with traffic
® Consume all network resources (e.g., SYN flooding)
® Overload a service with requests
® Use “expensive” requests (e.g.,“sign this data”)
® Can be extremely costly
® Result: service/host/network is unavailable
® Criminals sometimes use DDoS for racketeering

® Note: IP addresses of perpetrators are often hidden
(spoofed)

(D)DoS Techniques 101
(Don’t do these.)

® Send a stream of legitimate requests
® Send a few malformed packets
® causing failures or expensive error handling
® low-rate packet dropping (TCP congestion control)
® “ping of death”
® Abuse legitimate access

® Compromise service/host

® Use its legitimate access rights to consume the rights for
domain (e.g., local network)

The canonical DDoS attack

master ! !
(\) (router)
| Internet ¢ (Y "\

\/ target)

(zombies)

(adversary)

30

Adversary Network

(zombies)
9
(masters) ‘
(adversary) Q
=

Why DDoS?

® Motivations:
® An axe to grind
® Curiosity (script kiddies)
® Blackmail / racketeering

® Information warfare

® Distraction

Q:An easy fix!

® How do you solve distributed denial of
service!

Simple DDoS Mitigation

® Ingress/Egress Filtering: Helps spoofed sources, not much
else

® Better Security
® Limit availability of zombies (not feasible)

® Prevent compromise and viruses (maybe in wonderful magic
land where it rains chocolate and doughnuts)

® Quality of Service Guarantees (QoS)
® Pre- or dynamically allocated bandwidth (e.g., diffserv)
® Helps where such things are available

® Content replication
® Eg,.CDS

® Useful for static content

The End

