
CSCI 445:
Mobile Application Security

Prof. Adwait Nadkarni

1Derived from slides by William Enck

Project Presentations
• On April 30th
• These are “status”

presentations of 7-15 mins
duration (depending on # groups)
• RQs
• Analysis you are doing
• Findings (optional)
• Anticipated Results and

Findings
• 1 – 5 bonus credits
• Let me know by April 18th, i.e.,

Thursday

2

Worms
• A worm is a self-propagating program that:

1.Exploits some vulnerability on a target host
2.(often) embeds itself into a host …
3.Searches for other vulnerable hosts …
4.Goto step 1

6

The Danger
• What makes worms so dangerous is that infection grows at an

exponential rate

• A simple model:

•s (search) is the time it takes to find vulnerable host

• i (infect) is the time is take to infect a host

• Assume that t=0 is the worm outbreak, the number of hosts
at t=j is

2(j/(s+i))

7

The result

0

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

3,000,000,000

3,500,000,000

4,000,000,000

4,500,000,000

5,000,000,000

8

The Morris Worm

9

Robert Morris

10

• 1988: Graduate student at Cornell University

• Son of Robert Morris, chief scientist at
National Computer Security Center (division
of NSA)

• Now a professor at MIT

November 2nd, 1988
• 6pm: someone ran a program at a computer at

MIT
• The program collected host, network, and user

info...
• ... and then spread to other machines running

Sun 3, VAX, and some BSD variants
• ... rinse and repeat

11

November 2nd, 1988
• Computers became multiply infected
• Systems became overloaded with processes
• Swap space became exhausted, and machines

failed
• Wednesday night: UC Berkeley captures copy of

program

12

• 5AM Thursday: UC Berkeley builds sendmail
patch to stop spread of worm

• Difficult to spread knowledge of fix

•Not coincidentally, the Internet was
running slow

• Estimated at around 6,000 machines (~10% of
Internet) infected at cost of $10M-$100M

13

Morris Worm:Attack Vectors

• rsh: terminal client with network (IP)-based
authentication

• fingerd: used gets call without bounds checking

• sendmail: DEBUG mode allows remote user to
run commands

• lots of sendmail daemons running in DEBUG
mode (on by default)

14

Morris Worm: Propagation
• Worm would ask host if it was infected

• If answer was no, worm would infect

• If answer was yes, worm would infect with some small
probability (to thwart trivial countermeasure)

• But... bug allowed worm to spread much faster than
anticipated, infecting the same machines multiple times

• Lesson: Always thoroughly debug your worms.

15

Code Red - 2001
• Exploited a Microsoft IIS web-server buffer overflow

• Scans for vulnerabilities over random IP addresses

• Sometimes would deface the compromised website

• Initial outbreak on July 16th, 2001

• version 1: contained bad randomness (fixed IPs searched)

• version 2: fixed the randomness,

• added DDoS of www.whitehouse.gov

• Turned itself off and on (on 1st and 19th of month, attack 20-27th,
dormant 28-31st)

• August 4 - Code Red II

• Different code base, same exploit

• Added local scanning (biased randomness to local IPs)

• Killed itself in October of 2001
16

Stuxnet
• First reported June 2010

• Exploited unknown vulnerabilities

• Not one zero-day

• Not two zero-days

• Not three zero-days

• But four zero-days!

• print spooler bug

• handful of escalation-of-privilege vulnerabilities

17

Stuxnet
• Spread through infected USB drives

• bypasses “air gaps”

• Worm actively targeted SCADA systems (i.e., industrial control
systems)

• looked for WINCC or PCS 7 SCADA management system

• attempted 0-day exploit

• also tried using default passwords

• apparently, specifically targeted Iran’s nuclear architecture

18

Stuxnet

• Once SCADA system compromised, worm
attempts to reprogram Programmable Logic
Controllers (PLCs)

• Forensics aggravated by lack of logging in SCADA
systems

19

Worms and infection
• The effectiveness of a worm is determined by how good it is

at identifying vulnerable machines
• Multi-vector worms use lots of ways to infect: e.g., network, email, drive by

downloads, etc.

• Example scanning strategies:

• Random IP: select random IPs; wastes a lot of time scanning “dark” or
unreachable addresses (e.g., Code Red)

• Signpost scanning: use info on local host to find new targets (e.g., Morris)

• Local scanning: biased randomness

• Permutation scanning: “hitlist” based on shared pseudorandom sequence;
when victim is already infected, infected node chooses new random position
within sequence

20

Other scanning strategies
• The doomsday worm: a flash worm
• Create a hit list of all vulnerable hosts

• Staniford et al. argue this is feasible

•Would contain a 48MB list

• Do the infect and split approach

• Use a zero-day exploit

• Result: saturate the Internet is less than 30 seconds!

21

0

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

3,000,000,000

3,500,000,000

4,000,000,000

4,500,000,000

5,000,000,000

Worms: Defense Strategies
• (Auto) patch your systems: most large worm outbreaks have

exploited known vulnerabilities (Stuxnet is an exception)

• Heterogeneity: use more than one vendor for your networks

• IDS: provides filtering for known vulnerabilities, such that they
are protected immediately (analog to virus scanning)

• Filtering: look for unnecessary or unusual communication
patterns, then drop them on the floor

Operating
System

Network Interface

Firewall /
IDS

Network
Traffic

22

Denial-of-Service
(DoS)

23

Denial-of-Service (DoS)
• Intentional prevention of access to valued resource

• CPU, memory, disk (system resources)

• DNS, print queues, NIS (services)

• Web server, database, media server (applications)

• This is an attack on availability

• Launching DoS attacks is easy

• Preventing DoS attacks is very hard

24

Canonical DoS - Request Flood

•Overwhelm some
resource with
requests

• e.g., web-server,
phone system

•Most effective
when processing
request is
expensive

25

Smurf
Attacks

26

Example: SMURF Attacks
• Simple DoS attack:

• Send a large number PING packets to a network’s broadcast IP
addresses (e.g., 192.168.27.254)

• Set the source packet IP address to be your victim

• All hosts will reflexively respond to the ping at your victim

• … and it will be crushed under the load.

• This is an amplification attack and a reflection attack

Host

Host Host Host

Host

Host

Host

Host

Host

adversary Broadcast victim

27

Distributed Denial-of-service (DDoS)

• DDoS: Network oriented attacks aimed at preventing access
to network, host or service

• Saturate the target’s network with traffic

• Consume all network resources (e.g., SYN flooding)

• Overload a service with requests

• Use “expensive” requests (e.g., “sign this data”)

• Can be extremely costly

• Result: service/host/network is unavailable

• Criminals sometimes use DDoS for racketeering

• Note: IP addresses of perpetrators are often hidden
(spoofed)

28

(D)DoS Techniques 101
(Don’t do these.)

• Send a stream of legitimate requests

• Send a few malformed packets

• causing failures or expensive error handling

• low-rate packet dropping (TCP congestion control)

• “ping of death”

• Abuse legitimate access

• Compromise service/host

• Use its legitimate access rights to consume the rights for
domain (e.g., local network)

29

The canonical DDoS attack

Internet

LAN

(target)
(zombies)

(router)
(master)

(adversary)
30

Adversary Network

(adversary)

(masters)

(zombies)

(target)

31

Why DDoS?
• Motivations:
•An axe to grind
•Curiosity (script kiddies)
•Blackmail / racketeering
• Information warfare
•Distraction

32

Q: An easy fix?

• How do you solve distributed denial of
service?

33

Simple DDoS Mitigation
• Ingress/Egress Filtering: Helps spoofed sources, not much

else

• Better Security

• Limit availability of zombies (not feasible)

• Prevent compromise and viruses (maybe in wonderful magic
land where it rains chocolate and doughnuts)

• Quality of Service Guarantees (QoS)

• Pre- or dynamically allocated bandwidth (e.g., diffserv)

• Helps where such things are available

• Content replication

• E.g,. CDS

• Useful for static content

34

The End

35

