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Project Presentations
• On April 30th
• These are “status” 

presentations of 7-15 mins 
duration (depending on # groups)
• RQs
• Analysis you are doing
• Findings (optional)
• Anticipated Results and 

Findings
• 1 – 5 bonus credits
• Let me know by April 18th, i.e., 

Thursday
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Worms
• A worm is a self-propagating program that:

1.Exploits some vulnerability on a target host 
2.(often) embeds itself into a host …
3.Searches for other vulnerable hosts …
4.Goto step 1
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The Danger
• What makes worms so dangerous is that infection grows at an 

exponential rate

• A simple model:

•s (search) is the time it takes to find vulnerable host

• i (infect) is the time is take to infect a host

• Assume that t=0 is the worm outbreak, the number of hosts 
at t=j is

2(j/(s+i))
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The result
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The Morris Worm
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Robert Morris
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• 1988:  Graduate student at Cornell University

• Son of Robert Morris, chief scientist at 
National Computer Security Center (division 
of NSA)

• Now a professor at MIT



November 2nd, 1988
• 6pm: someone ran a program at a computer at 

MIT
• The program collected host, network, and user 

info...
• ... and then spread to other machines running 

Sun 3, VAX, and some BSD variants
• ... rinse and repeat
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November 2nd, 1988
• Computers became multiply infected
• Systems became overloaded with processes
• Swap space became exhausted, and machines 

failed
• Wednesday night:  UC Berkeley captures copy of 

program
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• 5AM Thursday: UC Berkeley builds sendmail
patch to stop spread of worm

• Difficult to spread knowledge of fix

•Not coincidentally, the Internet was 
running slow

• Estimated at around 6,000 machines (~10% of 
Internet) infected at cost of $10M-$100M
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Morris Worm:Attack Vectors

• rsh:  terminal client with network (IP)-based 
authentication

• fingerd:  used gets call without bounds checking

• sendmail:  DEBUG mode allows remote user to 
run commands

• lots of sendmail daemons running in DEBUG 
mode (on by default)
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Morris Worm: Propagation
• Worm would ask host if it was infected

• If answer was no, worm would infect

• If answer was yes, worm would infect with some small 
probability (to thwart trivial countermeasure)

• But... bug allowed worm to spread much faster than 
anticipated, infecting the same machines multiple times

• Lesson:  Always thoroughly debug your worms.
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Code Red - 2001
• Exploited a Microsoft IIS web-server buffer overflow

• Scans for vulnerabilities over random IP addresses

• Sometimes would deface the compromised website

• Initial outbreak on July 16th, 2001

• version 1: contained bad randomness (fixed IPs searched)

• version 2: fixed the randomness, 

• added DDoS of www.whitehouse.gov

• Turned itself off and on (on 1st and 19th of month, attack 20-27th, 
dormant 28-31st)

• August 4 - Code Red II

• Different code base, same exploit

• Added local scanning (biased randomness to local IPs)

• Killed itself in October of 2001
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Stuxnet
• First reported June 2010

• Exploited unknown vulnerabilities

• Not one zero-day

• Not two zero-days

• Not three zero-days

• But four zero-days!

• print spooler bug

• handful of escalation-of-privilege vulnerabilities
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Stuxnet
• Spread through infected USB drives

• bypasses “air gaps”

• Worm actively targeted SCADA systems (i.e., industrial control 
systems)

• looked for WINCC or PCS 7 SCADA management system

• attempted 0-day exploit

• also tried using default passwords

• apparently, specifically targeted Iran’s nuclear architecture
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Stuxnet

• Once SCADA system compromised, worm 
attempts to reprogram Programmable Logic 
Controllers (PLCs)

• Forensics aggravated by lack of logging in SCADA 
systems
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Worms and infection
• The effectiveness of a worm is determined by how good it is 

at identifying vulnerable machines
• Multi-vector worms use lots of ways to infect:  e.g., network, email, drive by 

downloads, etc.

• Example scanning strategies:

• Random IP: select random IPs; wastes a lot of time scanning “dark” or 
unreachable addresses (e.g., Code Red)

• Signpost scanning: use info on local host to find new targets (e.g., Morris)

• Local scanning: biased randomness

• Permutation scanning: “hitlist” based on shared pseudorandom sequence; 
when victim is already infected, infected node chooses new random position 
within sequence
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Other scanning strategies
• The doomsday worm: a flash worm
• Create a hit list of all vulnerable hosts

• Staniford et al. argue this is feasible

•Would contain a 48MB list

• Do the infect and split approach

• Use a zero-day exploit

• Result: saturate the Internet is less than 30 seconds!
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Worms: Defense Strategies
• (Auto) patch your systems:  most large worm outbreaks have 

exploited known vulnerabilities (Stuxnet is an exception)

• Heterogeneity: use more than one vendor for your networks

• IDS: provides filtering for known vulnerabilities, such that they 
are protected immediately (analog to virus scanning)

• Filtering: look for unnecessary or unusual communication 
patterns, then drop them on the floor 

Operating
System

Network Interface

Firewall /
IDS

Network
Traffic
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Denial-of-Service
(DoS)
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Denial-of-Service (DoS)
• Intentional prevention of access to valued resource

• CPU, memory, disk (system resources)

• DNS, print queues, NIS (services)

• Web server, database, media server (applications)

• This is an attack on availability

• Launching DoS attacks is easy

• Preventing DoS attacks is very hard
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Canonical DoS - Request Flood

•Overwhelm some 
resource with 
requests

• e.g., web-server, 
phone system

•Most effective 
when processing 
request is 
expensive
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Smurf 
Attacks
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Example: SMURF Attacks
• Simple DoS attack:

• Send a large number PING packets to a network’s broadcast IP 
addresses (e.g., 192.168.27.254)

• Set the source packet IP address to be your victim

• All hosts will reflexively respond to the ping at your victim

• … and it will be crushed under the load.

• This is an amplification attack and a reflection attack

Host

Host Host Host

Host

Host

Host

Host

Host

adversary Broadcast victim
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Distributed Denial-of-service (DDoS)

• DDoS:  Network oriented attacks aimed at preventing access 
to network, host or service

• Saturate the target’s network with traffic

• Consume all network resources (e.g., SYN flooding)

• Overload a service with requests

• Use “expensive” requests (e.g., “sign this data”)

• Can be extremely costly

• Result: service/host/network is unavailable

• Criminals sometimes use DDoS for racketeering 

• Note: IP addresses of perpetrators are often hidden 
(spoofed)
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(D)DoS Techniques 101
(Don’t do these.)

• Send a stream of legitimate requests

• Send a few malformed packets

• causing failures or expensive error handling

• low-rate packet dropping (TCP congestion control)

• “ping of death”

• Abuse legitimate access

• Compromise service/host

• Use its legitimate access rights to consume the rights for 
domain (e.g., local network)
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The canonical DDoS attack
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Adversary Network
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Why DDoS?
• Motivations:
•An axe to grind
•Curiosity (script kiddies)
•Blackmail / racketeering
• Information warfare
•Distraction
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Q: An easy fix?

• How do you solve distributed denial of 
service?
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Simple DDoS Mitigation
• Ingress/Egress Filtering:  Helps spoofed sources, not much 

else

• Better Security 

• Limit availability of zombies (not feasible)

• Prevent compromise and viruses  (maybe in wonderful magic 
land where it rains chocolate and doughnuts)

• Quality of Service Guarantees (QoS)

• Pre- or dynamically allocated bandwidth (e.g., diffserv)

• Helps where such things are available

• Content replication

• E.g,. CDS

• Useful for static content
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The End
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