
CSCI 445:
Mobile Application Security

Lecture 19

Prof. Adwait Nadkarni

1

Announcements
1. Application Analysis (Milestone 4) minimum requirements:
• Team of 1: 3 RQs, >=1 from each research goal.

• Team of 2: 5 RQs, >=1 from each research goal.
2. Final report: due on 05/02, extensions on a case-by-case

basis

3. Project Presentations (04/30): up to 5 bonus points
• RQs, progress, problems/challenges, anticipated results

• (approx.) 7-8 minute duration + 2 minutes for questions
(depending on how many groups present)
•Let me know by 04/18 if you want to present.

3

How do we study apps?
• Generally, two ways to do this:
• Static analysis tells you what can potentially happen

• Getting source code: ded, dex2jar, jadx, androguard
• Extending existing analysis frameworks (e.g., Fortify, soot)

• Frameworks targeted at Android: FlowDroid, Argus
• Dynamic analysis tells you what actually happened in a specific

runtime environment

• Several tools: TaintDroid, DroidScope
• Derivative environments: Droidbox, andrubis, MarvinSafe

• Hard to automate; need to explore every code path in the
app

4

Soundness vs Precision
• When analyzing applications,
• Sound analysis: Detects every instance of target/bad

behavior, i.e., doesn’t miss anything (i.e., no false negatives)
• Precise analysis: Detects only true instances of target/bad

behavior as bad behavior, i.e., doesn’t flag benign things (i.e., no
false positives)

• Which is sound? Static, or dynamic?
• Static

• Which is precise? Static, or dynamic?
• Dynamic, however, it depends on the granularity

5

Method method = foo.getClass().getMethod("doSomethingEvil", null);
method.invoke(foo, null);

, in theory; soundy in practice

Soundiness

6

Soundiness Manifesto
• Tools make decisions that sacrifice

soundness. Why?

• Precision, i.e., to reduce FPs
• Performance(i.e., execution time)

• However, soundy tools are practical.
So what is the problem?
• Problem: Soundness is assumed of

static analysis tools

• Unsound choices are only known
to very few experts

7

[1] Livshits, Benjamin, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer,
Uday P. Khedker, Anders Møller, and Dimitrios Vardoulakis. "In defense of soundiness: a manifesto." Communications of the ACM 58, no.
2 (2015): 44-46.

https://www.mobusinc.com/blog/beware-experts-
confuse-conceal

https://www.mobusinc.com/blog/beware-experts-confuse-conceal
https://www.mobusinc.com/blog/beware-experts-confuse-conceal

Motivation
• The soundiness manifesto talks about unsound choices in

terms of unsupported language features (e.g., reflection,
JNI)
• Unsound choices need to be made explicit. Why?

1. We (analysts, researchers) need to know the
limitations of our analysis

2. These choices propagate: Tools that inherit other
tools, also inherit their limitations, sometimes
unknowingly

8

It’s just a bunch of language features. Can’t we simply
enumerate them and document what a specific tool covers?

Motivating Example
• FlowDroid: Detects data leaks in Android apps
• Preliminary manual investigation:
• Key Finding 1: FlowDroid v1.0 does

not track code inside fragments

• It’s not just language features, is it?
• Reported the flaw, developers fixed it in FlowDroid v2.0
• Key Finding 2: We make slight variation in initializing the

fragment, and the flaw persists
• Key Finding 3: Of the 13 tools that inherit FlowDroid, only 1

considers this flaw, i.e., flaws propagate! Often unknowingly.

9

We need a scalable and efficient technique to
systematically detect such unsound choices

• Objective (Software Testing): For evaluating the effectiveness of
test cases/suites

•What can we do with this?

Mutation Testing

10

Test Suite XAndroid
APK

Mutant
Generation

Introduce variations of
errors that the test suite is
supposed to detect; e.g.,

Integer x = 10 à Integer x = null

test
Mutant
APKMutant

APKMutant
APKMutant

APKMutant
APKMutant

APKMutant
APK

Mutant
APKMutant

APKMutant
APKMutant

APKMutant
APK

Mutant
APKMutant

APK

Survived

Detected/Killed

mutate

Mutation
Operator:

Mutation-based Soundness
Evaluation (mSE)

11

1. Mutate apps using security operators and mutation schemes
2. Run analysis tool on mutants
3. Analyze uncaught mutants to discover unsound decisions

For evaluating Android security tools

Challenges
• What problems do we want to express?
• SE has mutation operators (i.e.,

simple code transformations)
• Mutation operators mimic

common software bugs

• What do we do for security?
• Where to seed the mutant?

• In SE, the general practice is to do
it everywhere (especially when
adding code).
• What else can we do for security?

12

Design: Security Operators
• Option A: Tool-specific operators? 100s of tools, not scalable
• Option B: Generic operators? Cannot apply to all tools

• Security operators are bound to the security goal of the analysis
(e.g., detecting data leaks, detecting SSL vulnerabilities)

• One-time effort: A single operator can evaluate a
large set of tools (e.g., all tools that detect data leaks, such
as FlowDroid, ARGUS, BlueSeal, etc.)

13

Design: Mutation Schemes
• Can we just seed mutants everywhere? Yes, and that’s

one possible strategy.

• Major considerations for Android security:
1. Android’s unique abstractions
•Activity, fragment, and other component

lifecycles
•Dynamically created callbacks (e.g., dynamically

created broadcast receivers, UI callbacks (e.g.,
onClick() and other callbacks defined in the XML
resources)
• ...

14

Design: Mutation Schemes
• Can we just seed mutants everywhere? Yes, and that’s

one possible strategy.

• Major considerations for Android security:
1. Android’s unique abstractions
•Activity, fragment, and other component lifecycles

•Dynamically created callbacks (e.g., dynamically
created broadcast receivers, UI callbacks (e.g.,
onClick)

• ...

15

Design: Mutation Schemes
• Can we just seed mutants everywhere? Yes, and that’s

one possible strategy.

• Major considerations for Android security:
2. Leveraging the security goal (e.g., finding data leaks)
• Taint-based operator placement:

• Source in one callback, sink in another. E.g., get
location in onStart() and export onPause()

•Complex paths: Make the path between source
and sink as complex as possible (e.g., add lots of
function calls in between)

16

Evaluation
• Data leak detectors: FlowDroid, Argus, DroidSafe
• Create thousands of mutants/leaks using mSE, and then execute

analysis tools on the mutants

• Manual Analysis for undetected leaks, using a systematic approach
1. Locate the source and sink

2. Analyze the call-chain: Which call (or call sequence) could
not be modeled by the analysis?
3. Build a minimal working example with the identified call

sequence and test again. On failure to evade detection, go
back to 2.

17

How to get from: 1000s
of undetected mutants
à unsound choices?

Unsound choices/ flaws

18

What about propagation?

19

• Most flaws propagate (e.g., IccTA and DidFail are completely
vulnerable to the same flaws as FlowDroid)

• Some tools only conceptually inherit FlowDroid, but use other
techniques that preclude same flaws (e.g., DroidSafe, BlueSeal)
• However, they may have other flaws

Parts of a paper
• Parts of paper (vast generalization)

1.Abstract
2.Introduction
3.Related Work/Background
4.Solution/Problem
5.Evaluation/Analysis/Experiment
6.Discussion (often, but not always)
7.Conclusions

20

Abstract
•One sentence each for:
• Area
• Topic of work
• Problem
•What’s the issue?
• Solution
• How do you propose to address the problem?
•Methodology
•What’s the experiment?
• Results
•What did you find?
• Take Away: Lesson

21

Introduction
• One paragraph each on:

• Area
• More elaborate

• Problem
• Scenario

•Why is problem not solved
• Brief of related work or the challenge

• Proposed insight (“In this paper, ...”)
• What is the experiment?

• Contributions -- What will the reader learn?

• Boilerplate outline (?)

22

Related work
•This is a statement of the work that led to this

one.
•who this work relies on•who has done work in the area• areas that inspired this work (not just technology)•Not a laundry list•There are several reasons for related work

section:•Motivate the current work•Differentiate from past work• Establish “bona fides”

23

Motivation, Background
•Motivation•Why is this a problem?• Motivating Example: Alice…•Why isn’t the problem solved?• Forward/backward reference to the related

work.• Problem, assumptions: Problem statement,
threat model, TCB.• Background: What all does the reader need to
know to understand your approach?• Already known material related to the solution• Tip: You can always move text from the design

to the background, to focus on the novel
contributions in the design.

24

System Architecture and Design

• How do you solve the problem?

• General Architecture / Overview
• What are the

• Design Goals?
• Challenges?

• Contributions of your design (i.e., the design
decisions) that help overcome the design challenges,
hence achieving the design goals?

25

Experiment
• Experiment
• Means of showing truth

• Big Insight -- Hypothesis -- Claim
• Show why it is interesting

• Expected Results
• Informal proof/argument that is true

• Experiment types
• Empirical - measure some aspect of the solution

• Analytical - prove something about solution

• Observational - show something about solution

26

Results vs Findings
• Results

• Summarize -- what do the results mean?

• Specific experiments

• We did X, saw Y

• What do the experiments prove

• What other experiments would you want to do based on
these results?

• Key Findings

• What do the results mean?

• What are the lessons?

• Lead to the takeaway.
27

Conclusion
•Like the abstract in past tense

•Problem
•What was the problem?

•Solution
•What was the insight and why was it expected to work?

•Method and Results
•What did you find?

•Take away: Lesson

•Future work

28

Hint
• Intro: tell them what you are going to tell

them
•Body: tell them
•Conclusion: tell them what you told

them.

29

The End

30

