
CSCI 445:
Mobile Application Security

Lecture 18

Prof. Adwait Nadkarni

1



Announcements
• Security Analysis Workshop/Hackathon!

•Next Thursday, in class
•Winner takes all: 3pt + on the class grade (> half a

step up)

2



• Analyzing the permissions of one
app
• Does the app need the 

permissions requested?

• Does the app request a high-risk 
permission?
•Or permission combinations?

• What are we missing?

• Multiple untrusted apps

• Apps communicate!

Is permission analysis enough?

3

App

Analysis

App 2
App 1

App 3

App 4

App n
...



Inter-app communication 
problems

• Collusion: Two apps may combine capabilities 
(e.g., location + Internet)

• Confused Deputy: An attacker may trick 
vulnerable apps

4

Protected Operation
(e.g., write Calendar)

TodoList

App without 
permission

App without 
permission 

✗ ✓

✓

Requires WRITE_CALENDAR permission



Analyzing Permission 
Re-delegation

5



Permission Re-delegation
Permission re-delegation occurs when an application with 
permission to access a resource makes a call on behalf of 
another application, which does not have that permission.

• A general case of the collusion and confused deputy
problems.
• The permission delegated by the user to the privileged 

app (i.e., the deputy), is granted (i.e., re-delegated) to the 
adversary, without the user’s consent 
• Also called a ‘capability leak’

6



• Goal: Analyze apps to identify potential confused deputies

• What to look at? Class Exercise!
1. Permissions requested

2. Public components:
i. Activities

ii. Services
iii. Receivers

iv. Providers
3. What can you do with the access, i.e., the impact of the 

capability leak?

Detecting permission re-delegation/ 
capability leaks

7

• Why prioritize these?
• Background components



Task: Analyze 1000+ apps for capability leaks

1. Prioritize apps based on privilege
• Apps with signature/system 

permissions (e.g., OEM apps)
• Apps with certain more 

dangerous permissions

•Are all dangerous 
permissions equal?

2. Identify public components

3. Find an execution path that uses 
the permission à Call graph!

• What API to watch for? 

8

Public (exported) 

Settings App: 
Broadcast 
Receiver onReceive()

f()

g()

bluetoothOn()

...

Crafted Intent

Let’s define a practical approach!

• Permission Maps! (for your analyses, even if 
you find this, along with step 1 and 2, it counts!)



Need for a more precise
approach

• Is the prior basic approach prone to FPs? Yes.

• Protections in the Manifest: Exported 
components may be permission protected, i.e., even if 
exported=“true”

• Authorization checks: Developers may perform 
security checks in code; FPs
• Rule A: If any check exists,

mark as negative. Problem?
•FNs

• Rule B: Check for specific

permissions: lower FPs and FNs
9



Challenges/Limitations
• Scope: Analysis only works for Android permissions

• Detecting app-specific capability leaks is difficult. 
E.g., making Dropbox write files to public storage.

• False Positives: Access control checks in apps may not 
always be obvious
• E.g., Apps may check for permissions, UIDs, PIDs, 

or some specific package/component name.

• False Negatives: App’s authorization checks may look 
okay; but can’t rule out false negatives without in-
depth analysis

10



Analyzing Inter-app 
communication

11



Intent Hijacking

12



Intent Hijacking

13

• But, what if there is more than one match?
• Activity: Ask the user!
• Service: ? 
• Random choice



Broadcast Theft

14

• Anyone who registers for a broadcast can receive
• No hijacking necessary

• What can we use to control who receives the broadcast?
• Permissions!



Basic analysis
• For each intent object, what do you look for?
• Is the call using this intent “explicit”?

• Does the intent have an action, flags, extra data?
• How to check for these characteristics?

• Simple string/signature matching? May work in simple 
cases.
• In most cases, data flow analysis may be required for a 

practical precision (as an intent can be modified over time).

• For few (or specific) apps, manual analysis is appropriate 
after some initial triaging.

15

String className = “A.class”;
Intent intent = new Intent(className)



The End

16


