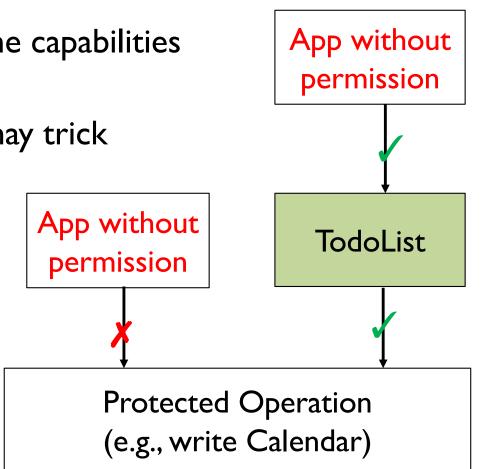
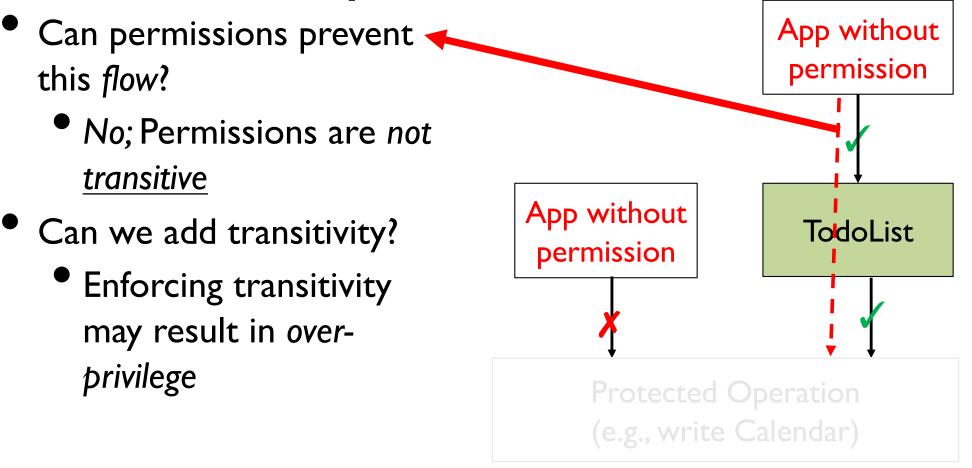

CSCI 445: Mobile Application Security

Lecture 17

Prof.Adwait Nadkarni

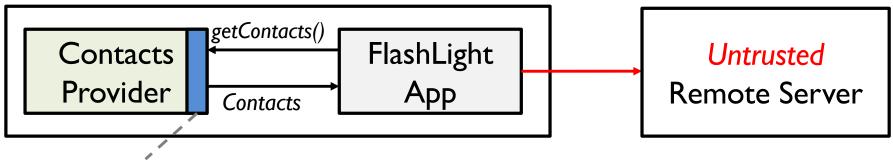

Is permission analysis enough?

- Analyzing the permissions of one app
 - Does the app *need* the permissions requested?
 - Does the app request a high-risk permission?
 - •Or permission combinations?
- What are we missing?
 - Multiple untrusted apps
 - Apps communicate!


Inter-app communication problems

- Collusion: Two apps may combine capabilities (e.g., location + Internet)
- Confused Deputy: An attacker may trick vulnerable apps
 - Q: Why does this happen?
 - A: Unprotected interfaces

Requires WRITE_CALENDAR permission


Inter-app communication problems

Requires WRITE_CALENDAR permission

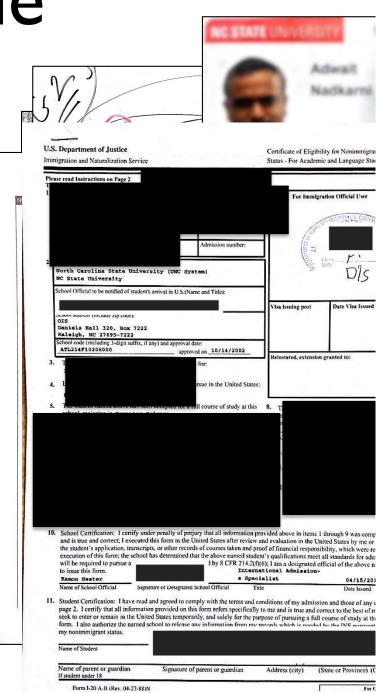
Tracking data leaks

- **Problem:** An app accesses the user's private data, and exports/leaks it to the network, without the user's consent.
 - Need to track information flow
- **Existing enforcement:** Permissions are only enforced at the first access.
 - Data once accessed is *copied* into the process memory of the receiver.
 - No control over what happens after the copy.

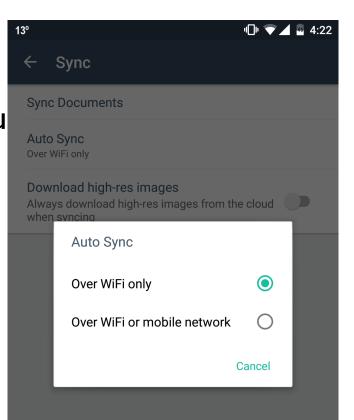
Permission Check

- 2011 Homework needed to be scanned
- **CamScanner** Scan with your phone (>50 million Downloads)

CamScanner - Phone PDF Top Developer Creator * * 931,839 😩

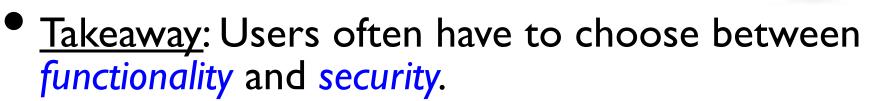

INTSIG Information Co.,Ltd Productivity

E Everyone Offers in-app purchases This app is compatible with all of your devices.


Premium account, no watermark!

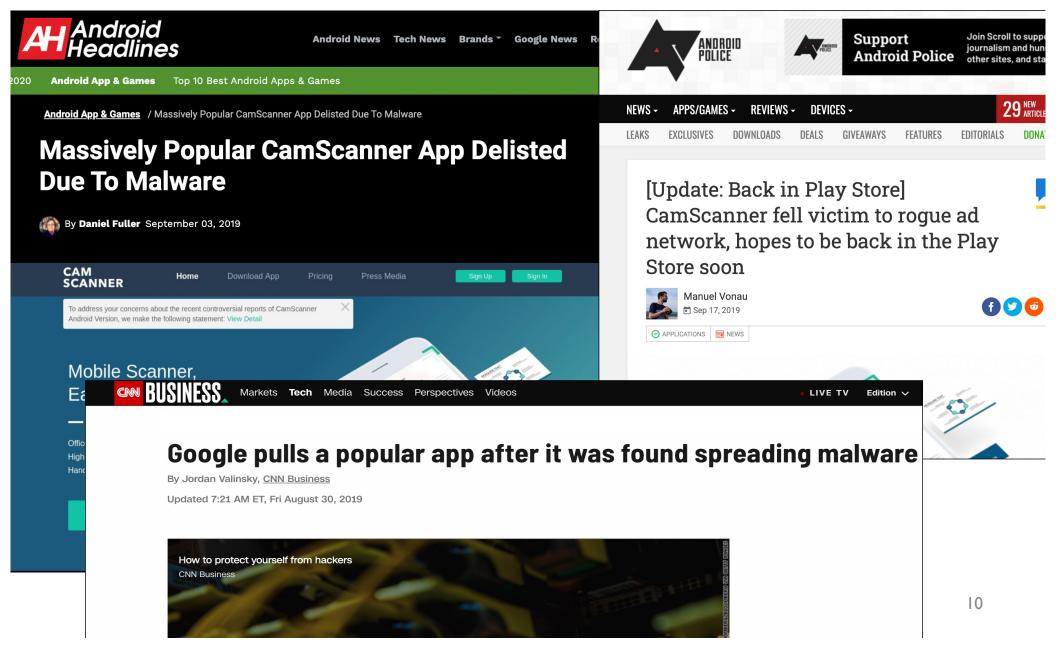
hat do we do about examples that (problems) 3 we "no consumers" or no possible majority? During (as the parent) ie. Duestions to ask the user -) for every example group (", examples closed () find the disagraing node w.n.t the majority 4) We generate Grow query = an U Ash the user if the want to togate the policy for that node. close to D by it er (c) that -) Find the nocle to ask questions about? L) het E={er] such potentias > Do not touch nodes in perfect (ritera. Whe then ask to er that solve consensus. 1 -> Choose nodes That solve >, "no conservas ire, we try to problem. fall inte man) reduce conflicts in >1 groups. groups as choose CONDITION : er the existing group tono majority for each noch veroblens" will end up problem Consensus (groups i) even worked Then, compute optiming ch Scanned by CamScanner Watermark (free version)

- Premium account removes watermark.
 - Q:What does this have to do with security?
 - A: "Personal" Cloud Backups



- Premium account removes watermark.
 - Q:What does this have to do with secu
 - A: "Personal" Cloud Backups
- Disaster Recovery
 - Disable automatic backup/sync?
 - Not an option

 \bigcirc


- Premium account removes watermark.
 - Q:What does this have to do with security?
 - A: "Personal" Cloud Backups
- Disaster Recovery
 - Disable automatic backup/sync?
 - Not an option

- Sometimes, we may not even be aware of it.

ADD

In other news...

Why do apps leak data?

- Malware/ Spyware
- Advertising (aggressive ad libraries may be packaged with apps)
- Accidentally
 - Bug reports
- Unwanted features/ add-ons
 - Without user consent or awareness

Implications of Data Leaks

- Loss of privacy: Privacy Policy Violations
 - E.g., HIPPA (medical data), GLBA (financial data), GDPR, CCPA, ...
- 2. Loss of confidentiality
 - Bring your own device (BYOD): Exfiltration of work data
- **3.** Loss of reputation (for apps)
 - E.g.: Facebook lost \$60 billion in valuation https://techcrunch.com/2018/03/31/who-gains-from-facebooks-missteps/

Detecting Data Leaks

Taint Tracking

- Taint analysis/tracking is a technique that tracks information dependencies from an origin
- For detecting data leaks, we track flows from source → sink
- Important terms:
 - Taint source (e.g., getIMEI())
 - Taint sink (e.g., network_send())
 - Taint propagation

```
c = taint_source();
...
a = b + c
...
network_send(a)
```

• The taint follows the data, even copies of data

TaintDroid

- Dynamic, variable-level taint tracking
- Tracks export of private data to the network
- Sources: Sensitive API calls (e.g., get IMEI, location)
- Sinks: Network API (e.g., creating sockets)
- Modification to the firmware
 - Adds taints when sensitive APIs are first called
 - Tracks taints at runtime
 - Raises alarm when tainted data is exported

Variable-level Tracking in VM

- TaintDroid modifies the Dalvik VM interpreter to store and propagate taint tags (a taint bit-vector) on variables. Why use a bit vector?
 - A 32-bit vector can store 32 taint values
- Local Variables/args: Taint tags are stored adjacent to the variable on the internal execution stack
- Class fields: Similar to locals, but inside static and instance field heap objects
- Arrays: One taint tag per array. Why?
 - To minimize performance overhead

out0			
out0 taint tag			
out1			
out1 taint tag			
(unused)			
VM goop			
v0 == local0			
v0 taint tag			
v1 == local1			
v1 taint tag			
v2 == in0			
v4 taint tag			

Taint Propagation Logic

- Can also represent bit vector as a set
 - i.e., if bits/taints for IMEI and Contacts are "set" in label L_X for variable X, then $L_X = \{IMEI, Contacts\}$
- Consider variables A ($L_A = \{\}$) and B ($L_B = \{IMEI\}$)
- Consider the assignment: A := B; what is L_A now?

• $L_A = \{IMEI\}$

- Consider C ($L_C = \{LOC\}$), & the assignment A += C; what is L_A ? • $L_A = L_A \cup L_C = \{IMEI\} \cup \{LOC\} = \{IMEI, LOC\}$
- This is known as *floating labels* (the labels/taints float with the data, i.e., propagate in the direction of the flow of data)

Privacy Study (TaintDroid)

 Selected 30 applications with bias on popularity and access to Internet, location, microphone, and camera

applications	#	permissions
The Weather Channel, Cetos, Solitarie, Movies, Babble, Manga Browser	6	
Bump, Wertago, Antivirus, ABC Animals, Traffic Jam, Hearts, Blackjack, Horoscope, 3001 Wisdom Quotes Lite, Yellow Pages, Datelefonbuch, Astrid, BBC News Live Stream, Ringtones	14	
Layer, Knocking, Coupons, Trapster, Spongebot Slide, ProBasketBall	6	
MySpace, Barcode Scanner, ixMAT	3	6
Evernote	Ι	8 6 L

Of 105 flagged connections, only 37 clearly legitimate

Tradeoffs

- Advantages: Precise analysis (mostly): If an alarm is raised, its very likely a true positive
 - Excluding cases where the export is legitimate
 - Precision is mostly due to the fine-grained variable-level tracking, as well as the dynamic nature of the analysis.

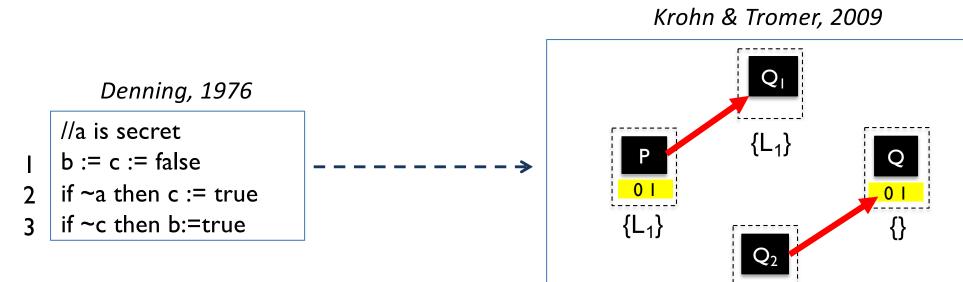
• Limitations:

- Soundness: False negatives due to the challenges in executing all possible code paths
- Variable-level granularity dynamic analysis may not detect implicit flows (more on the next slide)
 - Cannot protect against a *malicious* adversary

Other Limits to precision

- Persistent Storage: Tracked at the file-level
 - How does this impact precision? → False positives for finegrained database accesses
- Native code: Apps execute *native methods* through the Java Native Interface (JNI)
 - Method-level tracking: Propagate taint to method call, and then to the return value.
 - How does this affect precision? → coarse-grained tracking of native code

Implicit Flows


Data may be inferred from from control flows

```
//'a' contains a secret
b = false;
if (a == 0) {
    b = true;
}
```

b has the value of **a**, but not taint

Can we use static analysis in conjunction to detect implicit flows?

More Implicit Flows

a → b without label propagation: because either c:=true or b:=true were **not executed**

Attack Setup:

P sends a message to Q_i if the ith bit is '0'

{}

Step 3. Q guesses data '0 1'

 All the Q_is send Q a message at a fixed time interval, *unless* they have received a message from P

FlowDroid, Argus, ...

- Fine-grained, static, data flow analysis
- Model's Android's Lifecycle. Why?
 - There is no single main method
 - Support various entry points: lifecycle callbacks, UI callbacks, etc.
- Q: Can we detect implicit flows with FlowDroid?
- A:Yes!
- What do we lose?
 - Precision: Some flows may not execute in reality
 - Inter-app flows: Need the user's context, which is only available at runtime 23

The End