
CSCI 445:
Mobile Application Security

Lecture 17

Prof. Adwait Nadkarni

1



• Analyzing the permissions of one
app
• Does the app need the 

permissions requested?

• Does the app request a high-risk 
permission?
•Or permission combinations?

• What are we missing?

• Multiple untrusted apps

• Apps communicate!

Is permission analysis enough?

2

App

Analysis

App 2
App 1

App 3

App 4

App n
...



Inter-app communication 
problems

• Collusion: Two apps may combine capabilities 
(e.g., location + Internet)

• Confused Deputy: An attacker may trick 
vulnerable apps
• Q:  Why does this happen?

• A:  Unprotected interfaces

3

Protected Operation
(e.g., write Calendar)

TodoList

App without 
permission

App without 
permission 

✗ ✓

✓

Requires WRITE_CALENDAR permission



• Can permissions prevent 
this flow?
• No; Permissions are not 

transitive

• Can we add transitivity?
• Enforcing transitivity 

may result in over-
privilege

4

Protected Operation
(e.g., write Calendar)

TodoList

App without 
permission

App without 
permission 

✗ ✓

✓

Requires WRITE_CALENDAR permission

Inter-app communication 
problems



• Problem: An app accesses the user’s private data, and 
exports/leaks it to the network, without the user’s consent.
• Need to track information flow

• Existing enforcement: Permissions are only enforced at 
the first access.
• Data once accessed is copied into the process memory of 

the receiver.

• No control over what happens after the copy.

Tracking data leaks

5

FlashLight 
App

Contacts 
Provider

getContacts()

Contacts

Permission Check

Untrusted 
Remote Server



An example

6

• CamScanner – Scan with 
your phone (>50 million 
Downloads)

Scanned by CamScanner

Watermark (free version)

• Premium account, no 
watermark!

• 2011 -  Homework 
needed to be scanned



An example
• Premium account removes watermark.
• Q: What does this have to do 

with security?
– A: “Personal” Cloud Backups



An example

8

• Premium account removes watermark.
• Q: What does this have to do with security?

• Disaster Recovery

• Disable automatic backup/sync?

– A: “Personal” Cloud Backups

• Not an option

8



An example

9

• Premium account removes watermark.
• Q: What does this have to do with security?

• Disaster Recovery

• Disable automatic backup/sync?

– A: “Personal” Cloud Backups

• Not an option

• Takeaway: Users often have to choose between 
functionality and security.
–  Sometimes, we may not even be aware of it.



In other news...

10



Why do apps leak data?
• Malware/ Spyware

• Advertising (aggressive ad libraries 
may be packaged with apps)

• Accidentally
• Bug reports

• Unwanted features/ add-ons

•Without user consent or 
awareness

11



Implications of Data Leaks
1. Loss of privacy: Privacy Policy Violations

• E.g., HIPPA (medical data), GLBA (financial 
data), GDPR, CCPA, ...

2. Loss of confidentiality
• Bring your own device (BYOD): Exfiltration 

of work data

3. Loss of reputation (for apps)
• E.g.: Facebook lost $60 billion in valuation

12

https://techcrunch.com/2018/03/31/who-gains-from-facebooks-missteps/ 

https://techcrunch.com/2018/03/31/who-gains-from-facebooks-missteps/


Detecting Data Leaks

13



Taint Tracking
• Taint analysis/tracking is a technique that tracks 

information dependencies from an origin
• For detecting data leaks, we

track flows from sourceà sink

• Important terms:

• Taint source (e.g., getIMEI())

• Taint sink (e.g., network_send())

• Taint propagation

•The taint follows the data, even copies of data

14

c = taint_source();
…
a = b + c
…
network_send(a)



TaintDroid
• Dynamic, variable-level taint tracking

• Tracks export of private data to the network
• Sources?

• Sinks?
• Modification to the firmware

• Adds taints when sensitive 
APIs are first called

• Tracks taints at runtime
• Raises alarm when tainted 

data is exported
15

c = getDeviceID();
…
a = b + c
…
network_send(a)

Sources: Sensitive API calls (e.g., get IMEI, location)
Sinks: Network API (e.g., creating sockets)



Variable-level Tracking in VM
• TaintDroid modifies the DalvikVM interpreter to 

store and propagate taint tags (a taint bit-vector) on 
variables. Why use a bit vector?

• A 32-bit vector can store 32 taint values
• Local Variables/args: Taint tags are stored adjacent 

to the variable on the internal execution stack

• Class fields: Similar to locals, but inside static and 
instance field heap objects
• Arrays: One taint tag per array. Why?

• To minimize performance overhead

16



Taint Propagation Logic
• Can also represent bit vector as a set
• i.e., if bits/taints for IMEI and Contacts are “set” in label LX

for variable X, then LX = {IMEI, Contacts}
• Consider variables A (LA = {}) and B (LB = {IMEI})
• Consider the assignment: A := B; what is LA now? 

• LA = {IMEI}
• Consider C (LC = {LOC}), & the assignment A += C; what is LA?

• LA = LA U LC = {IMEI} U {LOC} = {IMEI, LOC}
• This is known as floating labels (the labels/taints float with the 

data, i.e., propagate in the direction of the flow of data)

17



Privacy Study (TaintDroid)
• Selected 30 applications with bias on popularity and 

access to Internet, location, microphone, and camera

• Of 105 flagged connections, only 37 clearly legitimate
18

applications # permissions
The Weather Channel, Cetos, Solitarie, Movies, Babble, 
Manga Browser 6
Bump, Wertago, Antivirus, ABC --- Animals, Traffic Jam, 
Hearts, Blackjack, Horoscope, 3001 Wisdom Quotes 
Lite, Yellow Pages, Datelefonbuch, Astrid, BBC News 
Live Stream, Ringtones

14

Layer, Knocking, Coupons, Trapster, Spongebot Slide, 
ProBasketBall 6

MySpace, Barcode Scanner, ixMAT 3
Evernote 1



Tradeoffs
• Advantages: Precise analysis (mostly): If an alarm is raised, its 

very likely a true positive

• Excluding cases where the export is legitimate
• Precision is mostly due to the fine-grained variable-level 

tracking, as well as the dynamic nature of the analysis.

• Limitations: 
• Soundness: False negatives due to the challenges in executing 

all possible code paths 

• Variable-level granularity dynamic analysis may not detect 
implicit flows (more on the next slide)
•Cannot protect against a malicious adversary 

19



Other Limits to precision
• Persistent Storage: Tracked at the file-level
• How does this impact precision? à False positives for fine-

grained database accesses 
• Native code: Apps execute native methods through the Java 

Native Interface (JNI)

• Method-level tracking: Propagate taint to method call, and 
then to the return value.
• How does this affect precision? à coarse-grained tracking 

of native code

20



Implicit Flows
• Data may be inferred from from control flows

•b has the value of a, but not taint

• Can we use static analysis in conjunction to detect implicit 
flows?

21

//'a' contains a secret
b = false;

  if (a == 0) {
b = true;

}



More Implicit Flows

22

//a is secret
b := c := false
if ~a then c := true
if ~c then b:=true 

Denning, 1976

Krohn & Tromer, 2009

22

P

0 1

{L1}

Q

{}
Q2

{}

Q1

{}

Attack SetupStep 1. P calls Q1Step 2. Q2 calls QStep 3. Q guesses data ‘0 1’

0 1

{L1}
1
2
3

aà b without label 
propagation: because 
either c:=true or b:=true 
were not executed Attack Setup:

• P sends a message to Qi if the ith bit is ‘0’
• All the Qis send Q a message at a fixed 

time interval, unless they have received a 
message from P



FlowDroid, Argus, ...
• Fine-grained, static, data flow analysis

• Model’s Android’s Lifecycle. Why?
• There is no single main method

• Support various entry points: lifecycle callbacks, UI 
callbacks, etc.

• Q: Can we detect implicit flows with FlowDroid?

• A: Yes!
• What do we lose?

• Precision: Some flows may not execute in reality
• Inter-app flows: Need the user’s context, which is only 

available at runtime 23



The End

24


