RRRRRRRRRRRR

CSCI 445:
Mobile Application Security

Lecture |6

Prof. Adwait Nadkarni



Project Part | Grades Released!

® Great job folks!
® Average score ~94!
® 8/15 teams scored 100!




Other Announcements

® HW4 released on Sunday, due on April
16th, 11:59 PM

® Directly related to today’s class and HW3
® Will discuss at the end of class (if possible)



Permission Analysis

Goal: Finding overprivileged apps



Recall: Principle of Least
Privilege

A system should only provide those rights needed to
perform the processes’ function and no more.

Implication |:you want to reduce the protection
domain to the smallest possible set of objects

Implication 2: you want to assign the minimal set of
rights to each subject

Caveat: of course, you need to provide enough rights
and a large enough protection domain to get the job

done.

How can we confirm that an app does not need a permission?




Recall: Android Permissions

® Permissions define capabilities (B Ao
o For. accessi.._ P LI AU SR SR S Pandora® internet radio
user/systen :
® E.g., SDcard, network, phone IMEI/IMSI,
contacts, calendar data, ... Storage

Modify/delete USB storage contents >

® For accessing objects belonging to other

System tools
Bluetooth administration, change Wi-Fi state,

aPPS: prevent phone from sleeping >
® E.g., Interfaces to services exposed by e O, ,
other apps, files/data of other apps Network communication

Create Bluetooth connections, full Internet

"""""" >



4 MEREITLRITN R W

10 <action android:name="android.intent.action.MAIN" />

11 <category android:name="android. intent.category.LAUNCHER" />

12 </intent-filter>

13 </activity>

14 <provider android:authorities="friends”

15 android:name="FriendProvider"”

16 android:writePermission="org.siislab. tutorial.permission. WRITE_FRIENDS"
17 android:readPermission="org.siislab. tutorial.permission.READ_FRIENDS">
18 </provider>

19 <service android:name="FriendTracker”™ android:process=":remote”

20 android:permission="org.siislab. tutorial.permission.FRIEND_SERVICE">

21 </service>

22 <receiver android:name="BootReceiver™s

23 <intent-filter>

24 <action android:name="android.intent.action.BOOT_COMPLETED"></action>
25 </intent-filter>

26 </receiver>

27 </application>

28

29 <!-- Define Permissions -->

sion android:name="org.siislab. tutorial.permission.READ_FRIENDS"></permissions
<permission android:name-"org.siislab.tutorial.permission.WRITE_FRIENDS"></permiiirz:i::::::::)
ission android:name="org.siislab. tutorial.permission.FRIEND_SERVICE"></permissi

33

34 <!-- Uses Permissions -->

35 <uses-permission android:name="org.siislab. tutorial.permission.READ_FRIENDS"></uses-permission>
36 <uses-permission android:name="org.siislab. tutorial.permission.WRITE_FRIENDS"></uses-permission>
37 <uses-permission android:name="org.siislab. tutorial.permission.FRIEND_SERVICE"></uses-permission>
38

3 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"></uses-permissio
<uses-permission android:name="android.permission.READ_CONTACTS"></uses-permission>
41 <U 2ss] ndroid:name="android.permission.ACCESS_FINE_LOCATION"></ X on>

42 </manifest>




Uses APl == Needs the Permission

® Stowaway [Felt et al. CCS’| I]
& P ull @ 3:54PM

. BaSiC aPPrOaChZ Permissions

This application can access the following on your
phone:

I . Analyze the manifest or code to ~ Your personal information

add or modify calendar events and send
email to guests, read Browser's history

determine the PermiSSions requested by and bookmarks, read calendar events,

read contact data, read sensitive log
data, write contact data

the GPP (Say Prequest) Network communication

full Internet access

2. Use static analysis to determine sensitive JREEEES

modify/delete USB storage contents

API CG”S made by the GPP Services that cost you

money
send SMS messages

3 . Build a permission map Hardware controls

take pictures and videos

Phone calls

® Permissions needed for an API call esinhere ey

System tools

4. Combine 2 and 3 and determine the set |-
of permissions needed by the app (P,eeqd)-

5. Violations = [P, cqyest = Pheed]



Permission Map

® Goal: To determine the permissions required to call an
API

® Hundreds of APIs and about a hundred permissions
® Look in the documentation?

® Basic approach: Empirical analysis
® Modify the OS to log each permission check

® Hook into a few methods (e.g,
checkPermission(...)) in the framework

® Execute all APIs using automated testing

® Note the permission(s) checked when a test case is
executed.



Challenges in building a
sound permission map

® What are the potential problems in automatically
executing framework APls/methods?

® Some APIs may expect a certain order (e.g., call
something else before this)

® Potential Solution: Manually adjust order
® Some APIs may expect specific parameter values

® Potential Solution: Manually add specific
parameters

® Lesson: Need for customizable, semi-automated testing.



Building the permission map

® Are we done! Is there any need for manual analysis?

® Different method argument values/combinations
may result in different permission checks

® Different API call sequences may also result in

different permission checks

® Manual analysis and confirmation can examine

arguments/combinations

® Are not API calls but still need permissions:

® Content Provider URIs

® System Intents/ protected String constants



Analyzing apps for overprivilege

Disassembled DEX files as input
Inter and Intra-procedural analysis
|dentify calls to known APlIs

What about Java reflection?
java.lang.reflect. Constructor.newInstance()

java. lang.reflect.Method.invoke()
® Static analysis: Track Class and Method names
® Up to a depth of 2 method call

Method sumInstanceMethod =
Operations.class.getMethod("publicSum", int.class, double.class);

|5



Findings

® Over 900 apps analyzed, >35% overprivileged
® Potential Causes:
® Developer Confusion

® Insufficient documentation of permission requirements
® Official (78 APIs) vs Stowaway (1259 APIs)

® Errors in the official documentation

® Copy and Paste



Factors affecting the documentation of
Permission Maps

® Complexity of AP, as well as the absolute number, is the main

factor
Phone Home
» 2011 study [Felt et al.], » Study of the Google Nest
identified 1259 API with platform [Kafle et al.],
permission checks (only identified the same number
78 documented!) as the documentation

® Correctness of this map remains a “policy specification” issue

® i.e., does this APl need a permission check?

Kafle, K., Moran, K., Manandhar, S., Nadkarni, A., & Poshyvanyk, D. (2019, March). A Study of Data Store-

based Home Automation. Proceedings of the 9th ACM Conference on Data and Application Security and
Privacy (CODASPY).Best Paper Award



Pitfalls of this approach

® Q:Does an API call really mean that an app needs a
permission!?
® No.What does the app claim to do? (e.g. ,use
description, Ul analysis)

® Dynamic code loading
® Needs to be continuously updated:
® Stowaway is outdated
® PScout provides mappings up to Android 5. |

® axplorer [USENIX’16] provides mappings up to
Android /.1

® https://github.com/reddr/axplorer



https://github.com/reddr/axplorer

A Permission-based security policy

® Apps ask for dangerous permissions: This security policy is
specified in the Android Manifest.

® If you know only the requested permissions:What is
undesirable/ potentially harmful?

® An application that can start on boot
® An application that can get Location
® An application that can use the Internet

® How about an app that can do all three?

® Potentially, a tracker




Security Rules (Kirin)

https://developer.android.com/reference/android/Manifest.permission.html

® Single Permission: SYSTEM_ALERT WINDOW (Draw over
other apps)

® Multiple Permissions: Class Exercise!

® RECORD_AUDIO and INTERNET (eavesdropping)

® ACCESS_FINE_LOCATION and
RECEIVE_BOOT COMPLETE (tracking)

® SEND _SMS and WRITE_SMS (use phone as bot for
spamming and erase evidence)

Permissions and action strings:
SET PREFERRED_APPLICATION, Intent filter with CALL
action


https://developer.android.com/reference/android/Manifest.permission.html

Deriving Security Rules

® Security requirements engineering
® Manual process
® Determine assets (e.g., Location data)

® Determine security goals, and threats, i.e., (mis)use cases
(e.g., in terms of confidentiality, an attacker may get location
and export it to a remote server).

® Determine the permissions required to compromise an
asset (e.g., FINE_LOCATION, INTERNET permissions)

® Limit rules to what is actually enforceable.

What is the most difficult step in this process?



Advantages

® Simple and fast analysis; good for triaging apps
® Easily deployable without significant modifications to the OS
® Add it to the installer

Disadvantages

® Coarse-grained analysis:

® False Positives, i.e., policy violations may be triggered by
legitimate apps; Manual analysis may be required

® False Negatives, i.e., Inter-app communication allows apps to
collude; i.e., malicious functionality may be distributed
among apps.



The End



