
CSCI 445:
Mobile Application Security

Lecture 16

Prof. Adwait Nadkarni

1

Project Part 1 Grades Released!

• Great job folks!
• Average score ~94!

• 8/15 teams scored 100!

2

Other Announcements
• HW4 released on Sunday, due on April

16th, 11:59 PM
• Directly related to today’s class and HW3

•Will discuss at the end of class (if possible)

3

Permission Analysis

6

Goal: Finding overprivileged apps

Recall: Principle of Least
Privilege

• Implication 1: you want to reduce the protection
domain to the smallest possible set of objects

• Implication 2: you want to assign the minimal set of
rights to each subject
• Caveat: of course, you need to provide enough rights

and a large enough protection domain to get the job
done.

How can we confirm that an app does not need a permission?
7

A system should only provide those rights needed to
perform the processes’ function and no more.

Recall: Android Permissions

• Permissions define capabilities
• For accessing objects belonging to the

user/system:
• E.g., SDcard, network, phone IMEI/IMSI,

contacts, calendar data, ...

• For accessing objects belonging to other
apps:
• E.g., Interfaces to services exposed by

other apps, files/data of other apps

8

Call some system API; e.g., getLocation()

Use Intents(start Activities, bind to services)

9

Uses API == Needs the Permission
• Stowaway [Felt et al. CCS’11]

• Basic approach:
1. Analyze the manifest or code to

determine the permissions requested by
the app (say Prequest)

2. Use static analysis to determine sensitive
API calls made by the app

3. Build a permission map

•Permissions needed for an API call

4. Combine 2 and 3 and determine the set
of permissions needed by the app (Pneed).

5. Violations = [Prequest – Pneed] 11

Permission Map
• Goal: To determine the permissions required to call an

API
• Hundreds of APIs and about a hundred permissions

• Look in the documentation?

• Basic approach: Empirical analysis

• Modify the OS to log each permission check

•Hook into a few methods (e.g.,
checkPermission(...)) in the framework

• Execute all APIs using automated testing

• Note the permission(s) checked when a test case is
executed.

12

Challenges in building a
sound permission map

• What are the potential problems in automatically
executing framework APIs/methods?
• Some APIs may expect a certain order (e.g., call

something else before this)

•Potential Solution: Manually adjust order
• Some APIs may expect specific parameter values

•Potential Solution: Manually add specific
parameters

• Lesson: Need for customizable, semi-automated testing.

13

Building the permission map
• Are we done? Is there any need for manual analysis?

• Different method argument values/combinations
may result in different permission checks

• Different API call sequences may also result in
different permission checks

• Manual analysis and confirmation can examine
arguments/combinations

• Are not API calls but still need permissions:
• Content Provider URIs

• System Intents/ protected String constants

14

Analyzing apps for overprivilege

• Disassembled DEX files as input

• Inter and Intra-procedural analysis
• Identify calls to known APIs

• What about Java reflection?
java.lang.reflect. Constructor.newInstance()
java. lang.reflect.Method.invoke()

• Static analysis: Track Class and Method names
•Up to a depth of 2 method call

15

Method sumInstanceMethod =
Operations.class.getMethod("publicSum", int.class, double.class);

Findings
• Over 900 apps analyzed, >35% overprivileged
• Potential Causes:

• Developer Confusion
• Insufficient documentation of permission requirements

•Official (78 APIs) vs Stowaway (1259 APIs)
• Errors in the official documentation

• Copy and Paste

16

Factors affecting the documentation of
Permission Maps

• Complexity of API, as well as the absolute number, is the main
factor

• Correctness of this map remains a “policy specification” issue

• i.e., does this API need a permission check?

18

Ø 2011 study [Felt et al.],
identified 1259 API with
permission checks (only
78 documented!)

Ø Study of the Google Nest
platform [Kafle et al.],
identified the same number
as the documentation

Phone Home

Kafle, K., Moran, K., Manandhar, S., Nadkarni, A., & Poshyvanyk, D. (2019, March). A Study of Data Store-
based Home Automation. Proceedings of the 9th ACM Conference on Data and Application Security and
Privacy (CODASPY).Best Paper Award

Pitfalls of this approach
• Q: Does an API call really mean that an app needs a

permission?
• No. What does the app claim to do? (e.g. ,use

description, UI analysis)

• Dynamic code loading
• Needs to be continuously updated:

• Stowaway is outdated
• PScout provides mappings up to Android 5.1

• axplorer [USENIX’16] provides mappings up to
Android 7.1

•https://github.com/reddr/axplorer 19

https://github.com/reddr/axplorer

A Permission-based security policy

• Apps ask for dangerous permissions: This security policy is
specified in the Android Manifest.
• If you know only the requested permissions: What is

undesirable/ potentially harmful?

• An application that can start on boot
• An application that can get Location

• An application that can use the Internet
• How about an app that can do all three?

•Potentially, a tracker

20

Security Rules (Kirin)
https://developer.android.com/reference/android/Manifest.permission.html

• Single Permission: SYSTEM_ALERT_WINDOW (Draw over
other apps)

• Multiple Permissions: Class Exercise!

• RECORD_AUDIO and INTERNET (eavesdropping)

• ACCESS_FINE_LOCATION and
RECEIVE_BOOT_COMPLETE (tracking)
• SEND_SMS and WRITE_SMS (use phone as bot for

spamming and erase evidence)
• Permissions and action strings:

SET_PREFERRED_APPLICATION, Intent filter with CALL
action

21

https://developer.android.com/reference/android/Manifest.permission.html

Deriving Security Rules
• Security requirements engineering
• Manual process

• Determine assets (e.g., Location data)
• Determine security goals, and threats, i.e., (mis)use cases

(e.g., in terms of confidentiality, an attacker may get location
and export it to a remote server).
• Determine the permissions required to compromise an

asset (e.g., FINE_LOCATION, INTERNET permissions)

• Limit rules to what is actually enforceable.

22

What is the most difficult step in this process?

Advantages
• Simple and fast analysis; good for triaging apps
• Easily deployable without significant modifications to the OS

• Add it to the installer

23

Disadvantages
• Coarse-grained analysis:
• False Positives, i.e., policy violations may be triggered by

legitimate apps; Manual analysis may be required
• False Negatives, i.e., Inter-app communication allows apps to

collude; i.e., malicious functionality may be distributed
among apps.

The End

24

