
CSCI 445:
Mobile Application Security

Lecture 23 (previously 15)

Prof. Adwait Nadkarni

1

Running scripts from home
• apktool instructions:
Move both files (apktool.jar & apktool) to /usr/local/bin (root
needed)

• No-root alternative:

• Create a bin inside home
• Help the OS find bin
• Export the path inside

your .bashrc file, so that it
is exported during every

session.
• Place apktool and other binaries inside this ~/bin
• Check if apktool is visible to the OS: $ which apktool

3

$ mkdir ~/bin
$ export PATH=$PATH:~/bin

$ vi ~/.bashrc
<paste the export command
inside the bashrc, at the
end>.

How do we study apps?
• Generally, two ways to do this:
• Static analysis tells you want can potentially happen.

• Getting source code: ded, dex2jar, androguard
• Extend existing analysis tools (e.g., Fortify)

• Frameworks: Flowdroid, Amandroid, DroidSafe
• Dynamic analysis tells you what actually happens given a specific

runtime environment

• TaintDroid, DroidScope
• Derivative environments: Droidbox, andrubis, MarvinSafe

• Note: dynamic analysis is hard to automate

4

Intro to Dynamic Analysis

5

Dynamic Analysis
• Execute the program, observe the

behavior

• Various abstractions and granularities
to monitor: instructions, system calls,
processes, API calls, etc.
• Generally, you monitor certain

protected operations
• E.g., call to sensitive API, network

connection

• Additionally, sometimes you enforce
• Prevent a call, or change returned

data
6

Offline vs Online Analysis
• OnlineAnalysis:

• In a real, production environment, i.e., on the
user’s phone

• Factors to consider: Performance, impact of
compromise

• OfflineAnalysis:

• In a test environment (e.g., test device, emulator)
• Factors to consider: Evasive malware, app

exploration

7

Hooks - 1
• General approach: Hook into the relevant protected operation,

and monitor programs’ execution of it à based on security
goal

• Diverse set of protected ops:

8

Hooks – 1I
• What does it mean to hook?: Intercept protected operation.
• Log execution of protected ops, OR get callbacks when

they happen
• Where (relative to the operation)?
• Right before, or right after the operation (e.g., for

auditing)
• How would you accomplish this?

• Modify the OS
• Modify the app (i.e., place an inline reference monitor (IRM))

9

What property do we want from our mechanism?

Recall: Reference monitor
• What three properties should a reference monitor possess?
• Complete mediation

• Tamperproof
• Easy to verify

10

• How would you accomplish this?
• Modify the OS

• Modify the app (i.e., place an inline reference monitor
(IRM))

Background: Protection Rings
• Successively less-privileged “domains”

• Modern CPUs support 4 rings
• Use 2 mainly: Kernel and user

• Intel x86 rings

• Ring 0 has kernel

• Ring 3 has application code

• Kernel: Can access physical memory

• Application process: Can only access its own virtual
memory space (i.e., not even memory space of other
processes)

11

Where to hook? -1
• Goal: Monitoring/Analyze an untrusted application
• Option A: Hook into the OS (e.g., Android Security

Modules (ASM) Framework)
• Complete mediation, and tamper-proof?
• Yes! The kernel can intercept all system calls

• Processes can’t access kernel memory (as long as the
kernel or trusted services are not compromised)

• Is online analysis feasible? (i.e., during real-time use)
• If you can get people to use the modified OS

• Is offline analysis feasible:

• Yes! But may not capture all behavior

13

Where to Hook? - II
• Goal: Monitoring/Analyze an untrusted application
• Option B: Inline reference monitor (IRM) (e.g., Aurasium)

• Rewrite the APK to place a check/callback whenever every
protected operation is called

• Complete mediation, and tamper-proof?

• The reference monitor and the program are loaded into
the same process memory space. So what?

•App can circumvent/tamper with monitor code!
• Is online analysis feasible?

• Depends. Breaks app update cycle, but the user does not
have to use custom firmware.

14

Where to Hook? - III
• Boxify: Provides the security of an OS-based reference

monitor, without modifying the OS.

• Uses OS support to enforce a secure IRM
• The “isolated process” abstraction available in Android

15

https://www.usenix.org/system/files/conference
/usenixsecurity15/sec15-paper-backes.pdf

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-backes.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-backes.pdf

Where to Hook? - III
• Boxify: Provides the security of an OS-based reference

monitor, without modifying the OS.

• Uses OS support to enforce a secure IRM
• The “isolated process” abstraction available in Android

• Rewrites the app, starts it in an isolated process, and another
process as a reference monitor
• OS hooks allow the reference monitor process to get

callbacks for protected events executed by the isolated
process.

• However, practicality challenges (e.g., signed app updates) still
remain

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-backes.pdf

16

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-backes.pdf

Challenges for Dynamic Analysis

1. Performance/resource Overhead

2. Granularity/Precision of Analysis
3. Evasive Malware

a. Malware that circumvents the monitor
(discussed previously)

b. Malware that adapts behavior

4. Application Exploration (coverage)
1. Higher FNs, but lower FPs (gross

generalization), relative to static

17

Evasive Malware
• Case 1: Offline Analysis, on an emulator

• How would malware avoid detection?
•Detect emulator (e.g., arch, OS build)

•Don’t execute malicious payload!
• Case 2: Offline Analysis, on a real test device

• How would malware avoid detection?
•Look for signs of real use (e.g., storage, contacts,

calendar)

•Only then execute payload

18

Application Exploration
• Two ways to do this: manual and automatic
• Option A: Manual

• Use human intuition to guide the exploration of the app
• Advantages?:

• Explore likely scenarios
• Disadvantages?:

•Costly (time and effort)
•Coverage may be subjective

20

Application Exploration
• Two ways to do this: manual and automatic
• Option B: Automatic/ semi-automatic (e.g., Monkey

(simplest), CrashScope, SMVHunter)
• Automate app exploration, guided by some heuristics
• Advantages?:

• Low manual efforts
• Disadvantages?:

•Covered behavior may be unrealistic and/or insufficient
• We are getting better at this (e.g., CrashScope exercises UI in

a deterministic fashion), but still a research challenge

• Other practical challenges: Getting past user accounts, paid
apps/services

21

Granularity of Analysis - I
• The precision of the analysis depends on the granularity
• i.e., high precision means low FPR

• Example 1: Detecting information stealing behavior
• Analysis 1: Raises alarm when IMEI is accessed

• Analysis 2: Notes when IMEI is accessed, keeps track of
where it flows, and raises alarm when it (or copies) is
exported to the network

• Which is more precise?
•Analysis 2, as it is relatively fine grained

22

Granularity of Analysis - II
• The precision of the analysis depends on the granularity
• i.e., high precision means low FPR

• Example 2: Detecting information stealing behavior (IMEI)
• Analysis 2: Tracks information flows among processes

• Analysis 3: Tracks information flows among program
variables
• Which is more precise?

•Analysis 3, as it is relatively fine grained
• Which is likely to be more sound?

•Analysis 2, as the OS has complete mediation over
process interactions

23

Project Presentations
• Next Tuesday
• These are “status”

presentations of 10 minute
duration
• RQs
• Analysis you are doing
• Findings (optional)
• Anticipated Results and

Findings
• 1 – 5 bonus credits
• Let me know by EoD today if you

want to present.

24

The End

25

