RRRRRRRRRRRR

CSCI 445:
Mobile Application Security

Lecture 23 (previously |5)

Prof. Adwait Nadkarni

Running scripts from home

® apktool instructions:

Move both files (apktool.jar & apktool) to /usr/local/bin (root
needed)

® No-root alternative:

® Create a bin inside home $ mkdir ~/bin
® Help the OS find bin S export PATH=SPATH:~/bin

o o
Export the path inside $ vi ~/.bashre

your .bashrc file, so that it <paste the export command

is exported during every 1nside the bashrc, at the

) end>.
session.

® Place apktool and other binaries inside this ~/bin
® Check if apktool is visible to the OS: $ which apktool

How do we study apps!

® Generally, two ways to do this:

® Static analysis tells you want can potentially happen.
® Getting source code: ded, dex2jar, androguard
® Extend existing analysis tools (e.g., Fortify)
® Frameworks: Flowdroid, Amandroid, DroidSafe

Dynamic analysis tells you what actually happens given a specific
runtime environment

® TaintDroid, DroidScope
® Derivative environments: Droidbox, andrubis, MarvinSafe

® Note: dynamic analysis is hard to automate

Intro to Dynamic Analysis

Dynamic Analysis

Execute the program, observe the *
behavior fary

Various abstractions and granularities L “
to monitor: instructions, system calls,
processes, AP calls, etc.

Generally, you monitor certain
brotected operations

® E.g., call to sensitive AP, network
connection

Additionally, sometimes you enforce

® Prevent a call, or change returned
data

Offline vs Online Analysis

® Online Analysis:

® In a real, production environment, i.e., on the
user’s phone

® Factors to consider: Performance, impact of
compromise

® Offline Analysis:
® In a test environment (e.g., test device, emulator)

® Factors to consider: Evasive malware, app
exploration

Hooks - |

® General approach: Hook into the relevant protected operation,
and monitor programs’ execution of it = based on security
goal

Table 1: Classification of authorization hook semantics required by Android security enhancements

Android | Package Sensors / Fake | System Content File Network | Third Party
System ICC Manager | Phone Info | Data Providers Access Access Extension
MockDroid [6] v v v v v
XManDroid [7] v v v v
TrustDroid [8] v v v v v
FlaskDroid [9] v v v v v v v v
CRePE [10] v v
Quire [12] v v
TaintDroid [14] v v v v
Kirin [15] v
IPC Inspection [18] v v
AppFence [19] v v v v v v v
Aquifer [22] v v v
APEX [23] v v v
Saint [24] v v v
SEAndroid [29] v v v v
TISSA [37] v v v

Hooks — ||

® What does it mean to hook?: Intercept protected operation.

® Log execution of protected ops, OR get callbacks when
they happen

® Where (relative to the operation)?

® Right before, or right after the operation (e.g., for
auditing)

® How would you accomplish this?

® Modify the OS
® Modify the app (i.e., place an inline reference monitor (IRM))

What property do we want from our mechanism?

Recall: Reference monitor

® What three properties should a reference monitor possess?

® Complete mediation

® Tamperproof

® Easy to verify

® How would you accomplish this?
® Modify the OS

® Modify the app (i.e., place an inline reference monitor
(IRM))

Background: Protection Rings

® Successively less-privileged “domains”

Least privileged

® Modern CPUs support 4 rings

Ring 1

Ring O

® Use 2 mainly: Kernel and user

Kernel

Intel x86 rings

-) Most privileged
Device drivers

® Ring 0 has kernel

Device drivers

® Ring 3 has application code

Applications

® Kernel: Can access physical memory

® Application process: Can only access its own virtual
memory space (i.e., not even memory space of other
processes)

Where to hook? -1

Goal: Monitoring/Analyze an untrusted application

Option A: Hook into the OS (e.g.,Android Security
Modules (ASM) Framework)

Complete mediation, and tamper-proof?
® Yes! The kernel can intercept all system calls

® Processes can’t access kernel memory (as long as the
kernel or trusted services are not compromised)

Is online analysis feasible? (i.e., during real-time use)
® If you can get people to use the modified OS
s offline analysis feasible:

® Yes! But may not capture all behavior

Where to Hook? - Il

Goal: Monitoring/Analyze an untrusted application
Option B: Inline reference monitor (IRM) (e.g.,Aurasium)

® Rewrite the APK to place a check/callback whenever every
protected operation is called

Complete mediation, and tamper-proof?

® The reference monitor and the program are loaded into
the same process memory space. So what?

® App can circumvent/tamper with monitor code!
Is online analysis feasible?

® Depends. Breaks app update cycle, but the user does not
have to use custom firmware.

Where to Hook!? - |l

® Boxify: Provides the security of an OS-based reference
monitor, without modifying the OS.

® Uses OS support to enforce a secure IRM

® The “isolated process” abstraction available in Android

-0 isolated App A 1 Isolated App B
' (Target) (Target)

]
)
']
‘]
« Process]
| boundaries

App Framework Tt Pty el Pupapapaerey gy ‘
Broker (Reference Monitor)

Service / System App :
(Platform Permissions) |§ |
Binder IPC Syscall

I el ettt T)

Binder Module Syscall API
(DAC + MAC)

Linux Kernel

https://www.usenix.org/system/files/conference
Jusenixsecurityl5/sec15-paper-backes.pdf

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-backes.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-backes.pdf

Where to Hook!? - |l

® Boxify: Provides the security of an OS-based reference
monitor, without modifying the OS.

® Uses OS support to enforce a secure IRM
® The “isolated process” abstraction available in Android

® Rewrites the app, starts it in an isolated process, and another
process as a reference monitor

® OS hooks allow the reference monitor process to get
callbacks for protected events executed by the isolated
process.

® However, practicality challenges (e.g., sighed app updates) still
remain

https://www.usenix.org/system/files/conference/usenixsecurity | 5/sec | 5-paper-backes.pdf

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-backes.pdf

Challenges for Dynamic Analysis

|. Performance/resource Overhead
2. Granularity/Precision of Analysis
3. Evasive Malware

a. Malware that circumvents the monitor
(discussed previously)

b. Malware that adapts behavior
4. Application Exploration (coverage)

|. Higher FNs, but lower FPs (gross
generalization), relative to static

Evasive Malware

® Case |: Offline Analysis, on an emulator
® How would malware avoid detection?
® Detect emulator (e.g., arch, OS build)
® Don’t execute malicious payload!
® Case 2: Offline Analysis, on a real test device
® How would malware avoid detection?

® Look for signs of real use (e.g., storage, contacts,
calendar)

® Only then execute payload

Application Exploration

® Two ways to do this: manual and automatic
® Option A: Manual
® Use human intuition to guide the exploration of the app
® Advantages?:
® Explore likely scenarios
® Disadvantages!:
® Costly (time and effort)

® Coverage may be subjective

Application Exploration

® Two ways to do this: manual and automatic

® Option B: Automatic/ semi-automatic (e.g., Monkey
(simplest), CrashScope, SMVHunter)

® Automate app exploration, guided by some heuristics
® Advantages?:
® Low manual efforts

® Disadvantages!:

® Covered behavior may be unrealistic and/or insufficient

® We are getting better at this (e.g., CrashScope exercises Ul in
a deterministic fashion), but still a research challenge

® Other practical challenges: Getting past user accounts, paid
apps/services

Granularity of Analysis - |

® The precision of the analysis depends on the granularity

® i.e., high precision means low FPR

Example |: Detecting information stealing behavior

® Analysis I: Raises alarm when IMEI is accessed

® Analysis 2: Notes when IMEl is accessed, keeps track of
where it flows, and raises alarm when it (or copies) is
exported to the network

® Which is more precise!?

® Analysis 2, as it is relatively fine grained

Granularity of Analysis - Il

® The precision of the analysis depends on the granularity
® i.e., high precision means low FPR

® Example 2: Detecting information stealing behavior (IMEI)
® Analysis 2: Tracks information flows among processes

® Analysis 3: Tracks information flows among program
variables

® Which is more precise?
® Analysis 3, as it is relatively fine grained
® Which is likely to be more sound?

® Analysis 2, as the OS has complete mediation over
process interactions

Project Presentations

Next Tuesday

These are “‘status”

presentations of /0 minute

duration Your Undeniable
® RQs Theory goes here

® Analysis you are doing

® Findings (optional)

® Anticipated Results and
Findings

| — 5 bonus credits

Let me know by EoD today if you
want to present.

24

The End

