
CSCI 445:
Mobile Application Security

Lecture 14

Prof. Adwait Nadkarni

1Derived from Slides by William Enck



Announcements
• Project Milestone 2 Graded!
•Most of you scored full or close to full
•Will release grades by Thursday, along with HW3

• HW4 will be released on Thursday
•Directly related to today’s class and HW3
•Will discuss in the next class

• 03/28 (Thursday): Guest lecture on the legal 
implications of vulnerabilities in mobile/IoT!

•Must attend!

4



Intro to Static Analysis

6



Introduction
• Literally, analyze programs (i.e., apps in this case) without 

executing them

• Various abstractions/granularities: strings, call graphs, 
instruction-level, procedure-level
• Some are more complex than the others

• In this class, we will study (and use) light-weight static 
analysis 

• Lots of analysis tools: FlowDroid,  AmanDroid, MalloDroid,...

• Tools that enable analysis: ded, dare, dex2Jar

7



An Android app
• Is installed as an apk, which contains:
• AndroidManifest.xml:A binary XML

• classes.dex: Application code compiled into Dalvik
Executable (dex) format.
• Executes in a Dalvik VM (DVM) (or ART)

• resources.arsc and res/: Application resources 
(e.g., UI layouts), important a few lectures later
• assets/: Other assets packaged with the app

• lib/: libraries compiled with the app
• META-INF/: Stores the signature

8

Q: Can there be more than one .dex file?



Multidex support in static 
analysis

• Why is it important?
• Android Studio enables 

multidex by default 
(since 2014)
• Need to look for 

vulnerable code in all 
.dex files
• Otherwise, you may end up 

with significant false
_________? 
(positives/negatives?)

9

negatives?



Enabling Analysis
• Disassemble to readable Dalvik bytecode using baksmali

• De-compilation to source code (Java). Why?

• Android apps are written in Java (generally)
• To use existing tools for analyzing Java source code.

• Vast range of tools/techniques for decompiling Java 
applications (i.e., class files) to source code.
• Q: Can we simply adapt these?

• A: No; the JVM and DVM are significantly different
• Solution: Retarget dex to Java class files (deep dive)

• Tools: ded (superceded by dare), dex2Jar, recent additions 
to Soot.

10

https://www.enck.org/pubs/enck-sec11.pdf


Very lightweight static analysis
• Searching for strings!
• Where would you search?

• Lots of options, starting with, ...
• The AndroidManifest is a surprisingly rich source of 

information. Class Exercise!!

• What permissions does the app ask for?
• What permissions does it define?

• What kinds of components does it have?
• Are they exported/internal?

• What permissions are used to protect components
• ...

11Grep is good, but use an XML parser



Lightweight static analysis
• Identify classes/methods of interest.
• Analyze return values/types.

• Used to identify potentially vulnerable/malicious 
target behavior.
• Analysis may raise 
several false alarms
• Require manual 

effort to confirm

12



Example: Identifying SSL misuse
• MalloDroid (Fahl et al.)

• Target behavior: What are 
we looking for?

• Trusting All certificates
• Trusting All hostnames

• No SSL pinning 

• No SSL use/ mixed use:
•Recall: Why is mixed 

use a problem? 
•SSL Stripping

•Stealing cookies 13

Internet



Locating Vulnerable code
• Parse code using existing tools (e.g., Androguard)
• Get method definitions, class definitions, etc.

• Perform light-weight analysis based on some known signatures
• Are there classes that override the TrustManager class?

• In any of these classes,
•Does the checkServerTrusted method return true?

• Is the getInsecure() used to get the SocketFactory object?
• If the HostnameVerifier is overridden, 
•Does it use an instance of the AllowAllHostnameVerifier?

• Identify more vulnerable custom classes, search for them again!
https://github.com/sfahl/mallodroid/blob/master/mallodroid.py

14

https://github.com/androguard/androguard
https://github.com/sfahl/mallodroid/blob/master/mallodroid.py


Advantages
• Fairly easy to implement, debug, and 

extend

• Fast

•No call graphs, control flows, or any 
other complex data structures to 
build.

•Allows you to quickly triage apps

15



Pitfalls
• Analysis may be imprecise (i.e., likely to have false positives)

1. Analysis leads to potential flaws

•Need manual analysis to confirm

•Q: Why is this an issue?
•A: Scalability (i.e., can you scale to all 10k apps?)

2. Some flaws may be in dead code, or code that is 
unlikely to be executed (e.g., old libraries)

• Analysis may be unsound (i.e., likely to have false negatives)

• Relies on coarse signatures, that will miss complex flaws
•E.g., MalloDroid may not detect an app implements 

complex SSL verification logic, which may still be 
flawed. 16



Other (more complex) 
Program analysis

• Lots of  Techniques: flow-sensitive, value-sensitive, context-
sensitive analysis

• Can answer complex questions:
• List of methods that may call this method
• Potential arguments to be passed into this method (e.g., 

Crypto API)
• Flows of data from source to sink methods (e.g., Location 
à Internet)

• Examples: FlowDroid, AmanDroid, DroidSafe, BlueSeal, ...
• Advantages: More precise and sound than lightweight analysis

• HOWEVER, are they really as sound as they claim to be? (soon)

17



General challenges for static 
analysis

• Obfuscation: For protecting IP (benign), or hiding 
malicious behavior.
• Can range from simple (i.e., changing variable names 

to reduce readability) to very complex (e.g., modifying 
control flows)

• Dynamic code loading
• Intricacies of Android’s app model: E.g., no 

“main” method, UI callbacks, lifecycle callbacks (relevant 
for deeper static analysis)
• Prior work tries to overcome this with lists

19



The End

20


