RRRRRRRRRRRR

CSCI 445:
Mobile Application Security

Lecture 14

Prof. Adwait Nadkarni

Derived from Slides by William Enck



Announcements

® Project Milestone 2 Graded!
® Most of you scored full or close to full
® Will release grades by Thursday, along with HW3
® HW4 will be released on Thursday
® Directly related to today’s €lass and HW3
®Will discuss in the next class

® 03/28 (Thursday): Guest lecture on the legal
implications of vulnerabilities in mobile/loT!

® Must attend!



Intro to Static Analysis



Introduction

® Literally, analyze programs (i.e., apps in this case) without
executing them
® Various abstractions/granularities: strings, call graphs,
instruction-level, procedure-level
® Some are more complex than the others

® In this class, we will study (and use) light-weight static

analysis
® Lots of analysis tools: FlowDroid, AmanDroid, MalloDroid,...

® Tools that enable analysis: ded, dare, dex2]ar




An Android app

® Is installed as an apk, which contains:
® AndroidManifest.xml: A binary XML

® classes.dex: Application code compiled into Dalvik
Executable (dex) format.

® Executes in a Dalvik VM (DVM) (or ART)

resources.arsc and res/: Application resources
(e.g., Ul layouts), important a few lectures later

® assets/: Other assets packaged with the app

® 1ib/: libraries compiled with the app
® META-INF/: Stores the signature

Q: Can there be more than one .dex file?



Multidex support in static
analysis

° V:/hy is i'F important? "”
Android Studio enables ’ CAUTI o N”

multidex by default
(since 2014)

'Oy

vulnerable code in all
.dex files

® Otherwise, you may end up

with significant false
7

(bositives/negatives?)




Enabling Analysis

® Disassemble to readable Dalvik bytecode using baksmali
® De-compilation to source code (Java). Why?

® Android apps are written in Java (generally)

® To use existing tools for analyzing Java source code.

® Vast range of tools/techniques for decompiling Java
applications (i.e., class files) to source code.

® Q:Can we simply adapt these?
® A:No; the JVM and DVM are significantly different
® Solution: Retarget dex to Java class files (deep dive)

® Tools: ded (superceded by dare), dex2]ar, recent additions
to Soot.



https://www.enck.org/pubs/enck-sec11.pdf

Very lightweight static analysis

® Searching for strings!
® Where would you search?
® Lots of options, starting with, ...

® The AndroidManifest is a surprisingly rich source of
information. Class Exercise!!

® What permissions does the app ask for?
® What permissions does it define?

® What kinds of components does it have?
® Are they exported/internal?

® What permissions are used to protect components
®

".Grep is good, but use an XML parser



Lightweight static analysis

® Identify classes/methods of interest.
® Analyze return values/types.
® Used to identify potentially vulnerable/malicious
target behavior.
® Analysis may raise
several false alarms
® Require manual

effort to confirm




Example: Identifying SSL misuse

® MalloDroid (Fahl et al.)

® Target behavior:What are

we looking for?
. -

Internet

rusting All certificates
. -

rusting All hostnames
® No SSL pinning
® No SSL use/ mixed use:

® Recall:Why is mixed
use a problem?

® SSL Stripping

® Stealing cookies 3




Locating Vulnerable code

® Parse code using existing tools (e.g., Androguard)

® Get method definitions, class definitions, etc.
® Perform light-weight analysis based on some known signatures
® Are there classes that override the TrustManager class?
® In any of these classes,
® Does the checkServerTrusted method return true?
® Is the getlnsecure() used to get the SocketFactory object?
® If the HostnameVerifier is overridden,

® Does it use an instance of the AllowAllHostnameVerifier?

® ldentify more vulnerable custom classes, search for them again!

https://github.com/sfahl/mallodroid/blob/master/mallodroid.py



https://github.com/androguard/androguard
https://github.com/sfahl/mallodroid/blob/master/mallodroid.py

Advantages

® Fairly easy to implement, debug, and
extend

® Fast

® No call graphs, control flows, or any

other complex data structures to
build.

® Allows you to quickly triage apps



Pitfalls

® Analysis may be imprecise (i.e., likely to have false positives)
I . Analysis leads to potential flaws
® Need manual analysis to confirm
® Q:Why is this an issue?
® A: Scalability (i.e., can you scale to all 10k apps?)

2. Some flaws may be in dead code, or code that is
unlikely to be executed (e.g., old libraries)

® Analysis may be unsound (i.e., likely to have false negatives)
® Relies on coarse signatures, that will miss complex flaws

® E.g., MalloDroid may not detect an app implements

complex SSL verification logic, which may still be
flawed.



Other (more complex)
Program analysis

Lots of Techniques: flow-sensitive, value-sensitive, context-
sensitive analysis

Can answer complex questions:
® List of methods that may call this method

® Potential arguments to be passed into this method (e.g.,
Crypto API)

® Flows of data from source to sink methods (e.g., Location
- Internet)

Examples: FlowDroid, AmanDroid, DroidSafe, BlueSeal, ...
Advantages: More precise and sound than lightweight analysis
HOWVEVER, are they really as sound as they claim to be? (soon)



General challenges for static
analysis

® Obfuscation: For protecting IP (benign), or hiding
malicious behavior.

® Can range from simple (i.e., changing variable names

to reduce readability) to very complex (e.g., modifying
control flows)

® Dynamic code loading

® Intricacies of Android’s app model: Eg., no
“main” method, Ul callbacks, lifecycle callbacks (relevant
for deeper static analysis)

® Prior work tries to overcome this with lists



The End



