
CSCI 445:
Mobile Application Security

Lecture 9

Prof. Adwait Nadkarni

1Derived from Slides by William Enck



Recap: 
Access control, Mobile OSes, 

and Intents/Intent-filters

4



Recall: Intents 
• Most common form of Inter-component communication

• Intents messages can be used for

• Starting an activity
• Starting a service

• Binding to a service
• Two types: explicit or implicit
• Explicit: start activity A from app XYZ”

• Implicit: start an activity to ACTION_VIEW a PDF
5

B A
Activity 
Manager

Start A Start an 
instance of A



Intent Filters 
• Intents are an indirect and asynchronous communication 

mechanism.

• Intent filters describe the service provided by a 
component: ACTION, DATA, CATEGORY, ...
• The system matches intents with filters

• But, what if there is more than one match?
• Activity: Ask the user!
• Service: ?

6

B A
Activity 
Manager

Start A Start an 
instance of A



On Mobile OSes

• Permissions define capabilities

• For accessing objects belonging to the 
user/system:

• E.g., SDcard, network, phone IMEI/IMSI, 
contacts, calendar data, ...

• For accessing objects belonging to other apps:

• E.g., Interfaces to services exposed by 
other apps, files/data of other apps

10

Call some system API; e.g., getLocation() 

Use Intents(start activities, bind to services)

Assume that the permission assignment is correct. 
Are we done?



Least Privilege
• Limit permissions to those 

required and no more
•Restrict privilege of the 

process of J to prevent leaks
•Cannot R/W O3

11

O1 O2 O3

J R RW -

S2 - R -

S3 - R RW

O1 O2 O3

J R RW -

S2 - R -

S3 - R RW

Does this mean we have security?



• Limit permissions to those 
required and no more
•Restrict privilege of the 

process of J to prevent leaks
•Cannot R/W O3

12

O1 O2 O3

J R RW -

S2 - R -

S3 - R RW

Does this mean we have security?Least Privilege

A trojan, or confused deputy can still 
append O1 to O2, which everyone can 

read.



Recall: An access control 
matrix with Least Privilege
•Do we get secrecy if we do not 

trust some of J’s processes?

13

O1 O2 O3

J R RW -

S2 - R -

S3 - R -

• Trojan Horse: Attacker 
controlled code run by J 
can violate secrecy.

• Confused Deputy: Attacker 
may trick trusted code to 
violate integrity



Inter-app communication: 
Attacks, best-practices and 

defenses

14



• Attacker may trick trusted code:

Confused Deputy

15

Protected Operation
(e.g., write Calendar)

TodoList

App without 
permission

App without 
permission 

✗ ✓

✓

Requires WRITE_CALENDAR permission



Confused Deputy
• Q: Why does this happen?

• A: Unprotected interfaces.

16

Protected Operation
(e.g., write Calendar)

TodoList

App without 
permission

App without 
permission 

✗ ✓

✓

Requires WRITE_CALENDAR permission



Receiving Intents

17

Benign AppMalicious 
App



Internal vs Exported Components

18

• What is the default?

• “False”
• CAVEAT!



Internal vs Exported Components

19



Unprotected Exported Components

20

Lesson 1: Set exported to false explicitly for 
internal components

TodoList

App without 
permission

✓



Protecting Exported Components

21



Protecting Exported Components

22

TodoList

App without 
permission

Requires WRITE_CALENDAR permission

✗



Protecting Exported Broadcast 
Receivers

• Recall: Broadcast receivers receive system-wide events (e.g., 
system has booted, SMS received).

• The attacker can broadcast an intent to trick the Broadcast Receiver into 
believing an event occurred!
• i.e., broadcast intent with BROADCAST_SMS.

• Android defines “protected broadcasts” to mitigate (i.e., ACTIONS 
only the system can broadcast). Solved?

• No! Explicit intents without the action! (i.e., start Receiver A)

• Mitigation 1: Use Permissions wherever possible.

23

Lesson 2: Broadcast receivers are generally 
exported. Protect them with permissions!



Protecting Exported Broadcast 
Receivers

• Recall: Broadcast receivers receive system-wide events (e.g., 
system has booted, SMS received).

• The attacker can broadcast an intent to trick the Broadcast Receiver into 
believing an event occurred!
• i.e., broadcast intent with BROADCAST_SMS.

• Android defines “protected broadcasts” to mitigate (i.e., ACTIONS 
only the system can broadcast). Solved?

• No! Explicit intents without the action! (i.e., start Receiver A)

• Mitigation 2: Or, check the caller’s identity.

24



Protecting Content Providers

25

Lesson 3: Protect both read and write interfaces 
of providers!



Precise provider access control

26



Sending Intents

27

Benign App
Malicious 

App



Implicit Intents, and Intent Hijacking

28



Implicit Intents, and Intent Hijacking

29

• But, what if there is more than one match?
• Activity: Ask the user!
• Service: ? 
• Random choice

Lesson 4: Know your defaults; especially who 
can receive your messages by default



Preventing Intent Hijacking

30



Limit the receivers of a Broadcast

• Anyone who registers for a broadcast can receive

• No hijacking necessary
• What can we use to control who receives the broadcast?

• Permissions!

31



Recall: Confused Deputy
• Q: Why does this happen?

• A: Unprotected interfaces.
• But, why does this really

happen?
• Permission enforcement is 

not transitive

• i.e., everybody in the call 
chain does not need to 
have the permission.

32

Protected Operation
(e.g., write Calendar)

TodoList

App without 
permission

App without 
permission 

✗ ✓

✓

Requires WRITE_CALENDAR permission



Transitivity in Permissions
• Permissions are not transitive
• i.e., everybody in the call chain does not need to 

have the permission.
• Can we add transitivity?
• Challenges? What principle would this violate?

•Permission bloat, i.e., overprivileged apps!

33


