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Recap: 
Access control, Mobile OSes, 

and Intents/Intent-filters
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Recall: Intents 
• Most common form of Inter-component communication

• Intents messages can be used for

• Starting an activity
• Starting a service

• Binding to a service
• Two types: explicit or implicit
• Explicit: start activity A from app XYZ”

• Implicit: start an activity to ACTION_VIEW a PDF
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Intent Filters 
• Intents are an indirect and asynchronous communication 

mechanism.

• Intent filters describe the service provided by a 
component: ACTION, DATA, CATEGORY, ...
• The system matches intents with filters

• But, what if there is more than one match?
• Activity: Ask the user!
• Service: ?
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On Mobile OSes

• Permissions define capabilities

• For accessing objects belonging to the 
user/system:

• E.g., SDcard, network, phone IMEI/IMSI, 
contacts, calendar data, ...

• For accessing objects belonging to other apps:

• E.g., Interfaces to services exposed by 
other apps, files/data of other apps
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Call some system API; e.g., getLocation() 

Use Intents(start activities, bind to services)

Assume that the permission assignment is correct. 
Are we done?



Least Privilege
• Limit permissions to those 

required and no more
•Restrict privilege of the 

process of J to prevent leaks
•Cannot R/W O3
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O1 O2 O3

J R RW -

S2 - R -

S3 - R RW

O1 O2 O3

J R RW -

S2 - R -

S3 - R RW

Does this mean we have security?



• Limit permissions to those 
required and no more
•Restrict privilege of the 

process of J to prevent leaks
•Cannot R/W O3
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O1 O2 O3

J R RW -

S2 - R -

S3 - R RW

Does this mean we have security?Least Privilege

A trojan, or confused deputy can still 
append O1 to O2, which everyone can 

read.



Recall: An access control 
matrix with Least Privilege
•Do we get secrecy if we do not 

trust some of J’s processes?
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O1 O2 O3

J R RW -

S2 - R -

S3 - R -

• Trojan Horse: Attacker 
controlled code run by J 
can violate secrecy.

• Confused Deputy: Attacker 
may trick trusted code to 
violate integrity



Inter-app communication: 
Attacks, best-practices and 

defenses
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• Attacker may trick trusted code:

Confused Deputy
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Protected Operation
(e.g., write Calendar)

TodoList

App without 
permission

App without 
permission 

✗ ✓

✓

Requires WRITE_CALENDAR permission



Confused Deputy
• Q: Why does this happen?

• A: Unprotected interfaces.
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Protected Operation
(e.g., write Calendar)

TodoList

App without 
permission

App without 
permission 

✗ ✓

✓

Requires WRITE_CALENDAR permission



Receiving Intents
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Benign AppMalicious 
App



Internal vs Exported Components
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• What is the default?

• “False”
• CAVEAT!



Internal vs Exported Components
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Unprotected Exported Components
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Lesson 1: Set exported to false explicitly for 
internal components

TodoList

App without 
permission

✓



Protecting Exported Components
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Protecting Exported Components
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TodoList

App without 
permission

Requires WRITE_CALENDAR permission

✗



Protecting Exported Broadcast 
Receivers

• Recall: Broadcast receivers receive system-wide events (e.g., 
system has booted, SMS received).

• The attacker can broadcast an intent to trick the Broadcast Receiver into 
believing an event occurred!
• i.e., broadcast intent with BROADCAST_SMS.

• Android defines “protected broadcasts” to mitigate (i.e., ACTIONS 
only the system can broadcast). Solved?

• No! Explicit intents without the action! (i.e., start Receiver A)

• Mitigation 1: Use Permissions wherever possible.
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Lesson 2: Broadcast receivers are generally 
exported. Protect them with permissions!



Protecting Exported Broadcast 
Receivers

• Recall: Broadcast receivers receive system-wide events (e.g., 
system has booted, SMS received).

• The attacker can broadcast an intent to trick the Broadcast Receiver into 
believing an event occurred!
• i.e., broadcast intent with BROADCAST_SMS.

• Android defines “protected broadcasts” to mitigate (i.e., ACTIONS 
only the system can broadcast). Solved?

• No! Explicit intents without the action! (i.e., start Receiver A)

• Mitigation 2: Or, check the caller’s identity.
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Protecting Content Providers
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Lesson 3: Protect both read and write interfaces 
of providers!



Precise provider access control
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Sending Intents
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Malicious 

App



Implicit Intents, and Intent Hijacking
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Implicit Intents, and Intent Hijacking
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• But, what if there is more than one match?
• Activity: Ask the user!
• Service: ? 
• Random choice

Lesson 4: Know your defaults; especially who 
can receive your messages by default



Preventing Intent Hijacking
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Limit the receivers of a Broadcast

• Anyone who registers for a broadcast can receive

• No hijacking necessary
• What can we use to control who receives the broadcast?

• Permissions!
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Recall: Confused Deputy
• Q: Why does this happen?

• A: Unprotected interfaces.
• But, why does this really

happen?
• Permission enforcement is 

not transitive

• i.e., everybody in the call 
chain does not need to 
have the permission.
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Protected Operation
(e.g., write Calendar)

TodoList

App without 
permission

App without 
permission 

✗ ✓

✓

Requires WRITE_CALENDAR permission



Transitivity in Permissions
• Permissions are not transitive
• i.e., everybody in the call chain does not need to 

have the permission.
• Can we add transitivity?
• Challenges? What principle would this violate?

•Permission bloat, i.e., overprivileged apps!
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