
CSCI 445:
Mobile Application Security

Lecture 8

Prof. Adwait Nadkarni

1

Sandboxing, on Android

• Android is a Linux-based system
• Apps are security principles, treated

as users
• Apps acquire permissions to access ...
• What separates apps from one

another?
• What separates Apps from the

kernel?
• What prevents apps from accessing

arbitrary storage?

2

Sandboxing, on Android
• Applications run as different Linux UIDs
• The low-level Android OS is protected by Linux file

permissions and SELinux policy
• All interactions outside the sandbox require authorization.

• The middleware ICC is protected by permissions

• A permission is just a text string that gains semantics
based on where it is used

(typically, android.permission.<name>)
• Android defines many permissions for protecting

resources and sensitive interfaces
(e.g.,android.permission.WRITE_CONTACTS).

• Can an app do damage without any permissions?
3

Android’s Permission Model

4

On Mobile OSes
• Permissions define capabilities

• For accessing objects belonging to
the user/system:

• E.g., SDcard, network, phone
IMEI/IMSI, contacts, calendar data,
...

• For accessing objects belonging to
other apps:
• E.g., Interfaces to services

exposed by other apps, files/data
of other apps

5

Manifest File

7

Protection Levels
• Normal: Very little risk, default value
• Automatically granted

• Dangerous: For high-risk protected operations
• E.g., user’s private data, functioning of the device/other apps.

• Must be explicitly granted by the user
• Signature: Granted only when the requesting and declaring apps

are signed with the same certificate.

• Privileged (flag) (signature/privileged): May accompany
platform-specific signature permissions, which must be explicitly
allowed/denied to OEM apps, or the device won’t boot.

• Q:Which of these permissions are normal? Internet, NFC, Bluetooth
pairing, kill processes, receive boot complete, IR

8

Consent: Install vs run-time
• >100 permissions

9

• Prior to Android 6.0
• User accepts all

permissions at install-time

• Android 6.0 and later
• Apps ask for individual

permissions at run-time
• Class Exercise: Which is better? Why?

Install-time vs run-time
• >100 permissions

10

• Prior to Android 6.0
• User accepts all

permissions at install-time

• Android 6.0
• Apps ask for individual

permissions at run-time
• How can apps abuse the run-time model?

Permissions and Users

11

Permission Effectiveness
• >100 permissions
• Users often ignore, or do not

understand, permissions [1]
• Why?
• Risk vs. assets

• Information Overload

12

[1] Felt, Adrienne Porter, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David Wagner. "Android permissions: User
attention, comprehension, and behavior." In Proceedings of the eighth symposium on usable privacy and security, ACM, 2012.

Permission Effectiveness
• >100 permissions
• Users often ignore, or do not

understand, permissions [1]
• Why?
• Risk vs. assets

• Information Overload

13

[1] Felt, Adrienne Porter, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David Wagner. "Android permissions: User
attention, comprehension, and behavior." In Proceedings of the eighth symposium on usable privacy and security, ACM, 2012.

Permission Effectiveness
• >100 permissions
• Users often ignore, or do not

understand, permissions [1]
• Is it better to have fewer

permissions?

• i.e., coarse-grained
permissions for everything?

14

[1] Felt, Adrienne Porter, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David Wagner. "Android permissions: User
attention, comprehension, and behavior." In Proceedings of the eighth symposium on usable privacy and security, ACM, 2012.

Permission Groups

15

https://developer.android.com/training/articles/user-data-overview.html

• Access is granted to the entire group. Implications?

https://developer.android.com/training/articles/user-data-overview.html

Permission Groups

16

• Access is granted to the entire group. Implications?
• In Group PHONE:
• READ_PHONE_NUMBERS: Find out the user’s

phone number. Relatively benign.
• Also in Group PHONE:
• CALL_PHONE: Call any phone
• READ_CALL_LOGS
• WRITE_CALL_LOGS
• PROCESS_OUTGOING_CALL: Allows an application to

see the number being dialed during an outgoing call with the option to
redirect the call to a different number or abort the call altogether.

Protecting Users, best
practices

17

Recall: The Principle of Least
Privilege

• Implication 1: you want to reduce the protection
domain to the smallest possible set of objects

• Implication 2: you want to assign the minimal set of
rights to each subject
• Caveat: of course, you need to provide enough rights

and a large enough protection domain to get the job
done.

18

A system should only provide those rights needed to
perform the processes function and no more.

1. Principle of Least Privilege
• Only request permissions your app requires.
• E.g., if you need approximate location, use

COARSE_LOCATION.

19

2. Describe Permission Use

20

3. Involve the User

21

3. Involve the User
• Using the camera:

•Use MediaStore.ACTION_IMAGE_CAPTURE or Media
Store.ACTION_VIDEO_CAPTURE

• The system asks for permission on your behalf,
captures the photo/video via the camera app, and
returns it.

22

4. Avoid fixed device identifiers

23

5. Pay attention to libraries
• Libraries (esp. Ad libraries, also

SDKs) packaged with the app may
request permissions.

• Why?
• Libraries execute as the app’s code

• i.e., within the app’s security
context

• What is the potential risk?

• Library code could misbehave!
• From the user’s perspective, the

permission is from your app.

24

https://www.coloribus.com/adsarchive/prints/dulcolax-
laxatives-library-2130205/

https://www.coloribus.com/adsarchive/prints/dulcolax-laxatives-library-2130205/
https://www.coloribus.com/adsarchive/prints/dulcolax-laxatives-library-2130205/

6. Some other things to avoid
• Avoid executing code that is not packaged in the app
• How is this possible?

•Dynamic code loading!
• Avoid asking for all runtime permissions at once

• Ask at the time of API use

25

Takeaways
• Permissions allow user-input in the access control decisions
• However, there are trade-offs

• Fine and course-grained permissions
• Runtime vs install-time

• Effectiveness depends on developers

26

