RRRRRRRRRRRR

CSCI 445:
Mabile Application Security

Lecture 5

Prof. Adwait Nadkarni

Derived from slides by William Enck, Micah Sherr, Patrick McDaniel, and Peng Ning

Private-key crypto is like a door lock

Encryption and Message

Authenticity
@r‘c- Alice, Dest = Bob) Whak& S “ﬁ.ﬁ
sg = Exi{{"network security is fun”,

ACk2("network security is funl")}} h&rd Par&?

J

L)

[~ |
: A 2

>

Alice Eve

Without knowing k1, Eve can’t read Alice’s message.

Without knowing k2, Eve can’t compute a valid
MAC for her forged message.

Public Key Crypto
(10,000 ft view)

® Separate keys for encryption and decryption

® Public key: anyone can know this
® Private key: kept confidential

® Anyone can encrypt a message to you using your
public key

® The private key (kept confidential) is required to
decrypt the communication

® Alice and Bob no longer have to have a priori shared a
secret key

Public Key Cryptography

® Each key pair consists of a public and
private component: k™ (public key), k-
(private key)

Dy~ (Eg+(m)) =m

® Public keys are distributed (typically)
through public key certificates

® Anyone can communicate secretly with
you if they have your certificate

RSA
(Rivest, Shamir, Adelman)
® The dominant public key

algorlthm "A method for obtaining Digital
® . . . Signatures and Public Key
The algorlthm Itself IS Cryptosystems”, Communications of

conceptually simple the ACM, Feb. 1978.

® Why it is secure is very
deep (number theory)

® Uses properties of
exponentiation modulo a

product of large primes

Modular Arithmetic

® Integers Z, = {0, 1,2,..,n-1}

® x mod n = remainder of x divided by n
® SmodI3=5
® 13 mod5=3

® v is modular inverse of x iff xy mod n = |
® 4isinverse of 3in Zi

® If nis prime, then Z, has modular inverses for all integers
except 0

Euler’s Totient Function

® coprime: having no common positive factors other than |

(also called relatively prime)
® 16 and 25 are coprime

® 6 and 27 are not coprime

® Euler’s Totient Function: ®(n) = number of integers less
than or equal to n that are coprime with n

1
o(n) =n-[(1->)
D
pln
where product ranges over distinct primes dividing n

® If m and n are coprime, then ®(mn) = ®(m)D(n)

® If m is prime, then ®(m) = m - |

Euler’s Totient Function

1
o) =n-[J- ")

p|n

®(18) = (3% -2") = 18(1 — %)(1 — %) =6

AW N —

RSA Key Generation

. Choose distinct primes p and q Example:
. Compute n = pq let p=3, g=11
. Compute CD(n) - G)(pq) n=33
= O(p)D(q)= (p-1)(g-1)
. Randomly choose |<e< ®(pq) ®(pq)=(3-1)(11-1)=20
such that e and ®(pq) are let e=7
coprime. e is the public key
exponent ed mod O(pqg) =1
. Compute d=e' mod(®(pq)). 7d mod 20=1

d is the private key
exponent d=3

RSA Encryption/Decryption

® Public key k* is {e,n} and private key k" is {d,n}
® Encryption and Decryption
E.+(M) : ciphertext = plaintext®* mod n
D,_(ciphertext) : plaintext = ciphertext? mod n
® Example
® Public key (7,33), Private Key (3,33)

® Plaintext: 4

® E£({7,33},4) = 4" mod 33 = 16384 mod 33 = 16
® D({3,33},16) = 163 mod 33 = 4096 mod 33 = 4

Is RSA Secure!

® {e,n} is public information
® If you could factor n into p*qg, then
® could compute ¢(n) =(p-1)(g-1)

® could compute d = e”! mod ¢(n)

® would know the private key <d,n>!
® But: factoring large integers is hard!

® classical problem worked on for centuries; no
known reliable, fast method

12

Security (Cont’ d)

® At present, key sizes of 1024 bits are
considered to be secure, but 2048 bits is better

® Tips for making n difficult to factor

I.p and g lengths should be similar (ex.: ~500
bits each if key is 1024 bits)

2 .both (p-1) and (g-1) should contain a “large”
prime factor

3.5cd(p-1, g-1) should be “small”
4.4 should be larger than n'/

13

RSA

® Most public key systems use at least |,024-bit keys
® Key size not comparable to symmetric key algorithms

® RSA is much slower than most symmetric crypto algorithms

® AES: ~161 MB/s
® RSA: ~82 KB/s

® This is too slow to use for modern network communication!

Solution: Use hybrid encryption

Hybrid Cryptosystems

® In practice, public-key cryptography is used to secure and
distribute session keys.

® These keys are used with symmetric algorithms for
communication.

® Sender generates a random session key, encrypts it using
receiver’s public key and sends it.

® Receiver decrypts the message to recover the session key.

® Both encrypt/decrypt their communications using the
same key.

® Key is destroyed in the end.

Hybrid Cryptosystems

rc = Alice, Dest = Bob
sg = Ee+(k), Ek("Network security is fun!")

Alice
(B*,B) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

Public Key Crypto

(10,000 ft view)

® Separate keys for encryption and decryption

® Public key: anyone can know this
® Private key: kept confidential
® Anyone can encrypt a message to you using your public key

® The private key (kept confidential) is required to decrypt the
communication

® Alice and Bob no longer have to have a priori shared a secret
key

Problem? YES. How do we know if Alice’s key is really Alice’s?

Public Key Cryptography

® Each key pair consists of a public and
private component: k™ (public key), k-
(private key)

Dy- (Ey+(m)) =m

Encryption using private key

® Encryption and Decryption
E..(M) : ciphertext = plaintext! mod n
D+ (ciphertext) : plaintext = ciphertext® mod n

® Eg,
® E((3,33},4) = 4% mod 33 = 64 mod 33 = 31
® D({7,33},31) = 31" mod 33 =27,512,614,1 | | mod 33
= 4

® Q: Why encrypt with private key?

® Non Repudiation!

Digital Signatures

® A digital signature serves the same purpose as a real
signature.

® It is a mark that only sender can make

® Other people can easily recognize it as belonging to the
sender

® Digital signatures must be:

® Unforgeable: If Alice signs message M with signature S, it
is impossible for someone else to produce the pair (M,).

® Authentic: If Bob receives the pair (M, S) and knows
Alice’s public key, he can check (“verify”’) that the signature
is really from Alice

® Example: Code signing

How can Alice sign a digital
document!

® Digital document: M
® Since RSA is slow, hash M to compute digest: m = h(M)
® Signature: Sig(M) = E,_(m) = m9 mod n
® Since only Alice knows k-, only she can create the signature
® To verify: Verify(M,Sig(M))
® Bob computes h(M) and compares it with D, (Sig(M))
® Bob can compute D,.(Sig(M)) since he knows k* (Alice’s public key)

® If and only if they match, the signature is verified (otherwise,
verification fails)

Putting it all together

Define m = “Network security is fun!”

Src = Alice, Dest = Bob]

Msg = Es«(k), Ek(m, Ea-(h(m)))

\

¢

Alice

(A", A") is Alice’s long-term public-private key pair.
(B*,B") is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

22

Birthday Attack
and Signatures

® Since signatures depend on
hash functions, they also
depend on the hash function’s
collision resistance

® Don’t use MDS5, and start
moving away from SHAI

Dear Anthony,

{This letter is

you to] [Mr.]|
I am writing

P.
} to introduce {to you[| --J Alfred {__}

new } {chief

Barton, the {newly appointed| |senior

. our
} jewellery buyer for {the}

European area will take the
Northern | gyrope division| - H®lhas taken| ©OVer | --

all

R , , watches and jewellery
responsibility for the whole of our interests in

jewellery and watches

. area afford] every
in the { }

X [may need
region| + Please | gigye | him 1311 the

help he | needs
seek out) [modern . top
to find | the most lup to date lines for the high end of the

samples
specimens

empowered |

authorized| } of the

market. He is { to receive on our behalf {

latest)] (watch and jewellery up limit
newest| |jewellery and watch| PToducts, \guypject| '° @ |maximum

carry

i i X letter
of ten thousand dollars. He will {hold} a signed copy of this { }

document

. .) , . . . appended

as proof of identity. An order with his signature, which is | itached

authorizes X above
allows you to charge the cost to this company at the jh.a4 office

[fully) [level . } X
address. We | -- | expect that our |volume of orders will increase in
following trust . , be
the next year and hope that the new appointment will prove

advantageous X
an advantage to both our companies.

Figure 11.7 A Letter in 237 Variations
(from Stallings, Crypto and Net Security)

Properties of a
Digital Signature

No forgery possible: No one can forge a
message that is purportedly from Alice

Authenticity check: If you get a sighed message
you should be able to verify that it’s really from Alice

No alteration/Integrity: No party can
undetectably alter a signed message

Provides authentication, integrity,and non-
repudiation (cannot deny having signed a signed
message)

Non-Repudiation

rc = Alice, Dest = Bob
sg = {"network security is fun”,

ACk("network security is fun!")}
4
g .

|

(¥ »

Al Which of these
- T—— sssssseeaeeeseenens O fTE I N O N -
rc = Alice, Dest = Bob .
sg = {"network security is fun”, re pu d | at|0 N ?

A-(h("network security is fun!"))}

|

/ ’
g -
o~
; ~\\ L ™

/8

But how do we verify we're
using the correct public key?

, : : +
[Bob's public key is Kevil Trust me.]

Short
answer: We
can’t.

It’s turtles all
the way down.

27

Why not just
use a database!

Every user has his/her own public key and private key.
Public keys are all published in a database.
Alice gets Bob’s public key from the database

Alice encrypts the message and sends it to Bob using
Bob’s public key.

Bob decrypts it using his private key.

What's the problem with this approach?

28

Solving the
Turtles Problem

® We need a trust anchor

® there must be someone with

authority
® requires a priori trust

® Solution: form a trust
hierarchy

® “l believe X because..”

® “Y vouches for X and..”

® «Z vouches for Y and..”

® “l implicitly trust Z.”

29

] Class 3 Public Primary Certification Authority
L [=] VeriSign Class 3 Public Primary Certification Authority - G5
L [=] VeriSign Class 3 International Server CA - G3
L = www.chase.com

Bt www.chase.com M
(Hovsmlrnd Issued by: VeriSign Class 3 International Server CA - G3
- Expires: Thursday, August 16, 2012 7:59:59 PM ET
@ This certificate is valid
v Details

Country US
State/Province New Jersey

Locality Jersey City

Organization JPMorgan Chase
Organizational Unit CIG

Common Name www.chase.com

o ® Country US
Organization VeriSign, Inc.
Organizational Unit VeriSign Trust Network
Organizational Unit Terms of use at https://www.verisign.com/rpa (c)10
Common Name VeriSign Class 3 International Server CA - G3

Serial Number 61 5C 33 2965 09 08 60 A4 E6 82 50 00 F6 22 FO

Version 3

Signature Algorithm SHA-1 with RSA Encryption (1 2 840 113549115)

Parameters none

L~ = Not Valid Before Tuesday, August 16, 2011 8:00:00 PM ET
[oni (5)) @ Internet Not Valid After Thursday, August 16, 2012 7:59:59 PM ET

What’s a certificate?

® A certificate ...

® ... makes an association between an
identity and a private key

® ... contains public key information {e,n}

® ... has a validity period

® ... is signed by some certificate authority (CA)

o

... identity may have been vetted by a registration
authority (RA)

® People trust CA (e.g.,Verisign) to vet identity

Why do | trust the certificate!?

® A collections of “root” CA certificates (self-signed)

® ... baked into your browser

® ... vetted by the browser manufacturer

® ... supposedly closely guarded

® trust anchor
® Root certificates used to validate certificate

® Vouches for certificate’s authenticity

O00 Certificate Manager

[Your Certificates = People Servers = Authorities Others}

You have certificates on file that identify these certificate authorities:

Certificate Name Security Device =
v The Go Daddy Group, Inc. :
Go Daddy Secure Certification Authority Software Security Device
Co Daddy Class 2 CA Builtin Object Token
Vv The USERTRUST Network
Network Solutions Certificate Authority Software Security Device
Register.com CA SSL Services (OV) Software Security Device
UTN-USERFirst-Hardware Builtin Object Token
UTN - DATACorp SGC Builtin Object Token
UTN-USERFirst-Network Applications Builtin Object Token
UTN-USERFirst-Client Authentication and Email Builtin Object Token
UTN-USERFirst-Object Builtin Object Token
v Turkiye Bilimsel ve Teknolojik Aragtirma Kurumu...
TUBITAK UEKAE Kok Sertifika Hizmet Saglayici... Builtin Object Token
v TURKTRUST Bilgi lletigsim ve Bilisim Guvenligi Hiz...
TURKTRUST Elektronik Sertifika Hizmet Saglay... Builtin Object Token
¥ University of Pennsylvania
DSL CA Authority Software Security Device
¥ Unizeto Sp. z o0.0.
Certum CA Builtin Object Token (]
v ValiCert, Inc.
RSA Public Root CA vl Software Security Device
http:/ /www.valicert.com/ Builtin Object Token .
htto: / fwww.valicert.com/ Builtin Obiect Token X
view..) (Edit..) (import..) [Export..) (Delete...

33

000 /[Privacy error

X

€& - C [https://www.csc.ncsu.edu

v ARSI =

Your connection is not private

Attackers might be trying to steal your information from www.csc.ncsu.edu (for

example, passwords, messages, or credit cards).

[] Automatically report details of possible security incidents to Google. Privacy policy

Advanced

Back to safety

Public Key
Infrastructure

®Hierarchy of keys used to authenticate
certificates

®Requires a root of trust (i.e.,a trust
anchor)

What is a PKI?

® Rooted tree of
CAs

¢ Cascading .

issuance @

® Any CA can

issue cert *.wm.edu * chase.com
o CAS iSSue @ @ CA3
certs for o
children V\;m'
edu

CAID) €A CALn CAZ}- CADY

Certificate Validation

PKls in Reality

\J
. -
38

Obtaining a Certificate

| . Alice has some identity document AP and generates a keypair (A",
A")

2.A — CA: {A*, AP} Sig(A-, {A*, AP))
* CA verifies signature -- proves Alice has A"
* CA may (and should!) also verify AP offline
3.ca signs {A*, AP} with its private key (CA")
® CA attests to binding between A+ and AP

4.cA - A {A*,AD} Sig(CA-, {A*, AP))

® this is the certificate; Alice can freely publish it

® anyone who knows CA* (and can therefore validate the CA’s

signature) knows that CA “attested to” {A*,A'P}

® note that CA never learns A-

® Any CA may sign any certificate
® Browser weighs all root CAs equally

® Q:Is this problematic?

The DigiNotar Incident

o0 0 —
&5 Home DigiNotar, Internet Tr % -

€ C i © www.diginotar.com

() SecDocs -:‘ G-Scholar m G-cal Y G-Maps

@ G-Voice G+

& NYT Jh MSNBC W Wiki jg Weather

TR

(] Other Bookmarks

Kve| @ ¢

@ MyAccess

DigiNotar®

A QB VIASCOC> COMPANY

Managed PKI
SSL Certificates
SIM-ID

Signing Service

DocProof

HOME | ANNOUNCEMENTS | PRODUCTS

BRANCH SOLUTIONS | ABOUT DIGINOTAR

PARTNERS | PROJECTS

agreement

How do you check the identity of someone

business online?

DigiNotar®, Internet Trust Provider

As independent Internet Trust Service Provider
DigiNotar focuses on ensuring the integrity of
information flow, and legal guarantees for all
online information exchange. More information >>

NOW

Announcements
> Publication report Fox-IT

Click here for the Interim report of Fox-IT
> Cooperation Dutch government
Read the press release >>

> DigiNotar reports security incident
Read the press release >>

<> VASCCOD

A VASCO COMPANY

41

DigiNotar Incident

® DigiNotar is a CA based
in the Netherlands that is
(well, was) trusted by
most OSes and browsers

® July 201 I: Issued fake
certificate for gmail.com
to site in lran that ran
MitM attack...

® .. this fooled most

browsers, but...

42

DigiNotar Incident

® As added security
measure, Google
Chrome hardcodes
fingerprint of '"ds s wiiostin T
Google’s certificate

Since DigiNotar
didn’t issue
Google’s true
certificate, this
caused an error
message in
Chrome .

How secure is the verifier?

® What happens if attacker is able to insert his

public root CA key to the verifier’s list of trusted
CAs!?

® More generally, what are the consequences if the
verifier is compromised!?

® Q:What’s in your app?

The End

