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Private-key crypto is like a door lock
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Why?



Encryption and Message 
Authenticity

Alice BobEve

Src = Alice, Dest = Bob
Msg = Ek1{{“network security is fun”,
MACk2(“network security is fun!”)}}
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Without knowing k2, Eve can’t compute a valid
MAC for her forged message.

Without knowing k1, Eve can’t read Alice’s message.

What’s the 
hard part?



Public Key Crypto
(10,000 ft view)
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• Separate keys for encryption and decryption

• Public key:  anyone can know this

• Private key:  kept confidential

• Anyone can encrypt a message to you using your 
public key

• The private key (kept confidential) is required to 
decrypt the communication

• Alice and Bob no longer have to have a priori shared a 
secret key



Public Key Cryptography

• Each key pair consists of a public and 
private component: k+ (public key), k-

(private key)

• Public keys are distributed (typically) 
through public key certificates

• Anyone can communicate secretly with 
you if they have your certificate
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Dk�(Ek+(m)) = m



RSA
(Rivest, Shamir, Adelman)

• The dominant public key 
algorithm 
•The algorithm itself is 

conceptually simple
•Why it is secure is very 

deep (number theory)
•Uses properties of 

exponentiation modulo a 
product of large primes

"A method for obtaining Digital 
Signatures and Public Key 
Cryptosystems“, Communications of 
the ACM, Feb. 1978.
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Modular Arithmetic
• Integers Zn = {0, 1, 2, ..., n-1}

• x mod n = remainder of x divided by n

• 5 mod 13 = 5

• 13 mod 5 = 3

• y is modular inverse of x iff xy mod n = 1

• 4 is inverse of 3 in Z11

• If n is prime, then Zn has modular inverses for all integers 
except 0
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Euler’s Totient Function
• coprime: having no common positive factors other than 1 

(also called relatively prime)

• 16 and 25 are coprime

• 6 and 27 are not coprime

• Euler’s Totient Function:  Φ(n) = number of integers less 
than or equal to n that are coprime with n

where product ranges over distinct primes dividing n

• If m and n are coprime, then Φ(mn) = Φ(m)Φ(n)

• If m is prime, then Φ(m) = m - 1
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Euler’s Totient Function
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RSA Key Generation
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1. Choose distinct primes p and q

2. Compute n = pq

3. Compute Φ(n) = Φ(pq)           
= Φ(p)Φ(q)= (p-1)(q-1)   

4. Randomly choose 1<e< Φ(pq) 
such that e and Φ(pq) are 
coprime.  e is the public key 
exponent

5. Compute d=e-1 mod(Φ(pq)).   
d is the private key 
exponent

Example:

let p=3, q=11

n=33 

Φ(pq)=(3-1)(11-1)=20

let e=7

ed mod Φ(pq) = 1

7d mod 20 = 1

d = 3



RSA Encryption/Decryption
• Public key k+ is {e,n} and private key k- is {d,n}

• Encryption and Decryption

Ek+(M) : ciphertext = plaintexte mod n

Dk-(ciphertext) : plaintext = ciphertextd mod n

• Example

• Public key (7,33), Private Key (3,33)

• Plaintext:  4

• E({7,33},4) = 47 mod 33 = 16384 mod 33 = 16

• D({3,33},16) = 163 mod 33 = 4096 mod 33 = 4
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Is RSA Secure?
• {e,n} is public information

• If you could factor n into p*q, then

• could compute f(n) =(p-1)(q-1)

• could compute d = e-1 mod f(n)
•would know the private key <d,n>!

• But: factoring large integers is hard!

• classical problem worked on for centuries; no 
known reliable, fast method
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Security (Cont’d)
• At present, key sizes of 1024 bits are 

considered to be secure, but 2048 bits is better

• Tips for making n difficult to factor

1.p and q lengths should be similar (ex.: ~500 
bits each if key is 1024 bits)

2.both (p-1) and (q-1) should contain a “large”
prime factor

3.gcd(p-1, q-1) should be “small”
4.d should be larger than n1/4



RSA
• Most public key systems use at least 1,024-bit keys

• Key size not comparable to symmetric key algorithms

• RSA is much slower than most symmetric crypto algorithms

• AES:  ~161 MB/s

• RSA:  ~82 KB/s

• This is too slow to use for modern network communication!

• Solution:  Use hybrid encryption
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Hybrid Cryptosystems
• In practice, public-key cryptography is used to secure and 

distribute session keys.

• These keys are used with symmetric algorithms for 
communication.

• Sender generates a random session key, encrypts it using 
receiver’s public key and sends it.

• Receiver decrypts the message to recover the session key.

• Both encrypt/decrypt their communications using the 
same key.

• Key is destroyed in the end.
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Hybrid Cryptosystems
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Alice Bob

Src = Alice, Dest = Bob
Msg = EB+(k), Ek(“Network security is fun!”)

(B+,B-) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.



Public Key Crypto
(10,000 ft view)
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• Separate keys for encryption and decryption

• Public key:  anyone can know this

• Private key:  kept confidential

• Anyone can encrypt a message to you using your public key

• The private key (kept confidential) is required to decrypt the 
communication

• Alice and Bob no longer have to have a priori shared a secret 
key

Problem? YES. How do we know if Alice’s key is really Alice’s?



Public Key Cryptography

• Each key pair consists of a public and 
private component: k+ (public key), k-

(private key)
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Dk�(Ek+(m)) = m



Encryption using private key

• Encryption and Decryption

Ek-(M) : ciphertext = plaintextd mod n
Dk+(ciphertext) : plaintext = ciphertexte mod n

• E.g.,

• E({3,33},4) = 43 mod 33 = 64 mod 33 = 31

• D({7,33},31) = 317 mod 33 = 27,512,614,111 mod 33 
= 4

• Q:  Why encrypt with private key?

• Non Repudiation!
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Digital Signatures
• A digital signature serves the same purpose as a real 

signature.

• It is a mark that only sender can make

• Other people can easily recognize it as belonging to the  
sender

• Digital signatures must be:

• Unforgeable: If Alice signs message M with signature S, it  
is impossible for someone else to produce the pair (M, S).

• Authentic:  If Bob receives the pair (M, S) and knows 
Alice’s public key, he can check (“verify”) that the signature 
is really from Alice

• Example: Code signing
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How can Alice sign a digital 
document?

• Digital document:  M

• Since RSA is slow, hash M to compute digest:  m = h(M)

• Signature:    Sig(M) = Ek-(m) = md mod n

• Since only Alice knows k-, only she can create the signature

• To verify:     Verify(M,Sig(M))

• Bob computes h(M) and compares it with Dk+(Sig(M))

• Bob can compute Dk+(Sig(M)) since he knows k+ (Alice’s public key)

• If and only if they match, the signature is verified  (otherwise, 
verification fails)
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Putting it all together
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Alice Bob

Src = Alice, Dest = Bob
Msg = EB+(k), Ek( m, EA-(h(m)) )

(A+, A-) is Alice’s long-term public-private key pair.
(B+,B-) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

Define m = “Network security is fun!”



Birthday Attack 
and Signatures
• Since signatures depend on 

hash functions, they also 
depend on the hash function’s 
collision resistance
• Don’t use MD5, and start 

moving away from SHA1
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Dear Anthony, 
 

!
"
#

$
%
&This letter is

I am writing   to introduce !"
#

$
%
&you to

to you  !"
#

$
%
&Mr.

--   Alfred !"
#

$
%
&P.

--    

 

Barton, the !"
#

$
%
&new

newly appointed  !"
#

$
%
&chief

senior   jewellery buyer for !"
#

$
%
&our

the    

 

Northern !"
#

$
%
&European

Europe  !"
#

$
%
&area

division  . He!"
#

$
%
&will take

has taken   over !"
#

$
%
&the

--   

 

responsibility for !"
#

$
%
&all

the whole of   our interests in !"
#

$
%
&watches and jewellery

jewellery and watches   

 

in the !"
#

$
%
&area

region  . Please !"
#

$
%
&afford

give   him !"
#

$
%
&every

all the   help he !"
#

$
%
&may need

needs    

 

to !"
#

$
%
&seek out

find   the most !"
#

$
%
&modern

up to date   lines for the !"
#

$
%
&top

high   end of the  

 

market. He is !"
#

$
%
&empowered

authorized   to receive on our behalf !"
#

$
%
&samples

specimens   of the 

 

!
"
#

$
%
&latest

newest  !"
#

$
%
&watch and jewellery

jewellery and watch   products, !"
#

$
%
&up

subject   to a !"
#

$
%
&limit

maximum    

 

of ten thousand dollars. He will !"
#

$
%
&carry

hold   a signed copy of this !"
#

$
%
&letter

document    

 

as proof of identity. An order with his signature, which is !"
#

$
%
&appended

attached    

 

!
"
#

$
%
&authorizes

allows   you to charge the cost to this company at the !"
#

$
%
&above

head office   

 

address. We !"
#

$
%
&fully

--   expect that our !"
#

$
%
&level

volume   of orders will increase in  

 

the !"
#

$
%
&following

next   year and !"
#

$
%
&trust

hope   that the new appointment will !"
#

$
%
&be

prove   

 

!
"
#

$
%
&advantageous

an advantage   to both our companies. 

 
Figure 11.7   A Letter in 237 Variations 

(from Stallings, Crypto and Net Security)



Properties of a 
Digital Signature

• No forgery possible: No one can forge a 
message that is purportedly from Alice

• Authenticity check: If you get a signed message
you should be able to verify that it’s really from Alice

• No alteration/Integrity: No party can 
undetectably alter a signed message

• Provides authentication, integrity, and non-
repudiation (cannot deny having signed a signed 
message)
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Non-Repudiation
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Alice Bob

Src = Alice, Dest = Bob
Msg = {“network security is fun”,
MACk(“network security is fun!”)}

Alice Bob

Src = Alice, Dest = Bob
Msg = {“network security is fun”,
EA-(h(“network security is fun!”))}

Which of these 
offer non-
repudiation?



But how do we verify we’re 
using the correct public key?
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Alice

Bob’s public key is              . Trust me.

Not Bob



Short 
answer:  We 

can’t.
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It’s turtles all 
the way down.



Why not just 
use a database?

• Every user has his/her own public key and private key.  

• Public keys are all published in a database.

• Alice gets Bob’s public key from the database

• Alice encrypts the message and sends it to Bob using 
Bob’s public key.

• Bob decrypts it using his private key.

• What’s the problem with this approach?
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Solving the 
Turtles Problem
• We need a trust anchor

• there must be someone with 
authority

• requires a priori trust

• Solution:  form a trust 
hierarchy

• “I believe X because...”

• “Y vouches for X and...”

• “Z vouches for Y and...” 

• “I implicitly trust Z.”
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Browser
Certificate
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What’s a certificate?
• A certificate …

• … makes an association between an 
identity and a private key
• … contains public key information {e,n}

• … has a validity period

• … is signed by some certificate authority (CA)

• … identity may have been vetted by a registration 
authority (RA)

• People trust CA (e.g., Verisign) to vet identity
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Why do I trust the certificate?

• A collections of “root” CA certificates (self-signed)

•… baked into your browser
•… vetted by the browser manufacturer
•… supposedly closely guarded
• trust anchor

• Root certificates used to validate certificate
•Vouches for certificate’s authenticity
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Public Key 
Infrastructure

•Hierarchy of keys used to authenticate 
certificates

•Requires a root of trust (i.e., a trust 
anchor)
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What is a PKI?
• Rooted tree of 

CAs
• Cascading 

issuance
• Any CA can 

issue cert
• CAs issue 

certs for 
children

… … …

Root

CA1 CA2 CA3

CA11 CA12 CA21 CA22CA1n

Cert11a Cert11b Cert11c … … … …
36

*

*.wm.edu

*.cs.
wm.
edu

*.chase.com



Certificate Validation

… … …

Root

CA1 CA2 CA3

CA11 CA12 CA21 CA22CA1n

Cert11a Cert11b Cert11c … … … …

Certificate
Signature
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*

*.wm.edu

*.cs.wm.edu



PKIs in Reality
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Obtaining a Certificate
1.Alice has some identity document AID and generates a keypair (A-, 

A+)

2.A → CA :  {A+, AID}, Sig(A-, {A+, AID})

• CA verifies signature -- proves Alice has A-

• CA may (and should!) also verify AID offline

3.CA signs {A+, AID} with its private key (CA-)

• CA attests to binding between A+ and AID

4.CA →A : {A+, AID}, Sig(CA-, {A+, AID})

• this is the certificate;  Alice can freely publish it

• anyone who knows CA+ (and can therefore validate the CA’s 
signature) knows that CA “attested to” {A+, AID}

• note that CA never learns A-
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• Any CA may sign any certificate

• Browser weighs all root CAs equally

• Q: Is this problematic?
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The DigiNotar Incident



DigiNotar Incident

• DigiNotar is a CA based 
in the Netherlands that is 
(well, was) trusted by 
most OSes and browsers

• July 2011:  Issued fake 
certificate for gmail.com 
to site in Iran that ran 
MitM attack...

• ... this fooled most 
browsers, but...
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DigiNotar Incident
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• As added security 
measure, Google 
Chrome hardcodes 
fingerprint of 
Google’s certificate

• Since DigiNotar 
didn’t issue 
Google’s true 
certificate, this 
caused an error 
message in 
Chrome



How secure is the verifier?

• What happens if attacker is able to insert his 
public root CA key to the verifier’s list of trusted 
CAs?

• More generally, what are the consequences if the 
verifier is compromised?
• Q: What’s in your app?
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The End
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