RRRRRRRRRRRR

CSCI 445:
Mobile Application Security

Lecture 4

Prof. Adwait Nadkarni

Derived from slides by William Enck, Micah Sherr and Patrick McDaniel

Block ciphers: Generic Block
Encryption

Converts one input plaintext block of fixed size b bits to an
output ciphertext block also of b bits

Benefits of large b? of short b!?
Block and key size are separate parameters
E.g.,AES, DES, DESX (won'’t go into much detail for this class)

plaintext m m m o

key .

ciphertext

Two Principles for Cipher Design

* Confusion: Make the relationship between the <plaintext,
key> input and the <ciphertext> output as complex
(non-linear) as possible

— Mainly accomplished by substitution

* Diffusion: Spread the influence of each input bit across
many output bits
— Mainly accomplished by permutation

* Idea: use multiple, alternating permutations and
subsitutions
— $—»P—>5—P—-S5—.. or P>5—>P—-S5S—P—..

— Does it have to alternate!, e.g.,
$—S—§—P—P—-P-5-55—...

Two Principles for Cipher Design

g

[N/
17177

Bl BT |l |

LR
e — == e ey
Uiy ISR —Sa A s Y]

RV A

]

ng - — 1, (P o XL

VEls
i =BT T T 557
/s & .

Two Principles for Cipher Design

plaintext m m m XK
S2>P>S>P>S->...

\ \

ciphertext

* Can | predictably change the plaintext, by
changing the ciphertext!?

—No. The relationship is too complex.

Modes of Operation

* Most ciphers work on blocks of fixed (small) size
* How to encrypt long messages!

* Modes of operation
— ECB (Electronic Code Book)

— CBC (Cipher Block Chaining)
— CTR (Counter)

— (there are many more; we will look at 3 for a bare
minimum understanding)

plaintext m m m ceoe
key : :

¥ ¥ ¥ \
Giniseol block 0 § block 1 § block 2 B30

Issues for Block Chaining Modes

Information leakage:Does it reveal info about the plaintext
blocks?

Ciphertext manipulation: Can an attacker modify ciphertext
block(s) in a way that will produce a predictable/desired
change in the decrypted plaintext block(s)?

— Note: assume the structure of the plaintext is known, e.g., first

block is employee #1 salary, second block is employee #2 salary,
etc.

Parallel/Sequential: Can blocks of plaintext (ciphertext) be
encrypted (decrypted) in parallel?

Error Propagation: If there is an error in a plaintext
(ciphertext) block, will there be an encryption (decryption)
error in more than one ciphertext (plaintext) block!?

Electronic Code Book (ECB)

Plaintext =

Ciphertext =

* The easiest mode of operation; each block is
independently encrypted

ECB Decryption

* Each block is independently decrypted

9

ECB Issues

* Information leaks: two ciphertext blocks that are
the same

* Manipulation: switch ciphertext with predictable
results on plaintext (e.g., shuffle).

* Parallel: yes
* Propagate: no

Plaintext ECB t

4 Tract de la Société Secréte 4:13 Ode to ECB by Ben Nagy

4:13 Ode to ECB

Sometimes it can seem like there’s ECB everywhere. ECB on TV,
ECB in music, it's endless. But that doesn’t make it safe. Or right.
So tune out and avoid ECB, no matter what your friends, the TV,

or your favourite cryptographer tells you.

by Ben Nagy

Oh little one, you’re growing up
You’ll soon be writing C

You’ll treat your ints as pointers
You’ll nest the ternary

You’ll cut and paste from github
And try cryptography

But even in your darkest hour
Do not use ECB

CBC’s BEASTly when padding’s abused

And CTR’s fine til a nonce is reused

Some say it’s a CRIME to compress then encrypt

Or store keys in the browser (or use javascript)

Diffie Hellman will collapse if hackers choose your g
And RSA is full of traps when e is set to 3

Whiten! Blind! In constant time! Don’t write an RNG!
But failing all, and listen well: Do not use ECB

They’ll say “It’s like a one-time-pad!

The data’s short, it’s not so bad

the keys are long—they’re iron clad

I have a PhD!”

And then you’re front page Hacker News
Your passwords cracked—Adobe Blues.
Don’t leave your penguin showing through,
Do not use ECB Canadian Joke

Council

You'll be glad you did!

@natashenka
True Bugs Wait © #truebugswait

Cipher Block Chaining (CBC)

In|t|aI|zat|on
Vector

* Chaining dependency: each ciphertext block depends on all
preceding plaintext blocks

Initialization Vectors

* Initialization Vector (IV)
— Used along with the key; not secret

— For a given plaintext, changing either the key, or
the IV, will produce a different ciphertext

— Why is that useful?

* |V generation and sharing
— Random; may transmit with the ciphertext

— Incremental; predictable by receivers

14

CBC Decryption

* How many ciphertext blocks does each
plaintext block depend on!?

15

CBC Properties

Does information leak!?

— Identical plaintext blocks will produce different
ciphertext blocks

Can ciphertext be manipulated profitably?
— Yes

Parallel processing possible!?

— no (encryption), yes (decryption)
Do ciphertext errors propagate!
— yes (encryption), a little (decryption)

16

Counter Mode (CTR)

CTR Mode Properties

Does information leak?

— ldentical plaintext block produce different ciphertext blocks
Can ciphertext be manipulated profitably

— Yes!

Parallel processing possible

— Yes (both generating pad and XORing)

Do ciphertext errors propagate!
— No.

Allow decryption the ciphertext at any location

— ldeal for random access to ciphertext

18

What encryption
does and does not

* Does:

— confidentiality
 Doesn’t do:

— data integrity

— source authentication

e Need: ensure that data is not altered and is
from an authenticated source

Principals

Src=Alice, Dest=Bob
Msg = “security is fun!”

tve

20

Man-in-the-Middle (MitM) attack

Msg = “security is not fun!”

Src=Alice, Dest=Bob
Msg = “security is fun!”

Src=Alice, Dest=Bob]

tve

21

Message Authentication Codes
(MACs)

MACs provide message integrity and authenticity

MACk(M) — use symmetric encryption to produce short
sequence of bits that depends on both the message (M) and
the key (K)

MAC:s should be resistant to existential forgery: Eve should
not be able to produce a valid MAC for a message M' without
knowing K

To provide confidentiality, authenticity, and integrity of a message,
Alice sends

— Ex(M,MACKk(M)) where Ek(X) is the encryption of X using key K

Proves that M was encrypted (confidentiality and integrity) by
someone who knew K (authenticity)

Message Authenticity

rc = Alice, Dest = Bob rc = Alice, Dest = Bob
sg = {"security is fun”, Esg = {"security isn't funl”, 222}

ACk("security is fun!")}

2 \)
/ C\\
A
(7 .

>

&

Alice Eve

Without knowledge of k, Eve can’t compute a valid
MAC for her forged message!

23

Encryption and Message
Authent|C|ty

rc = Alice, Dest = Bob
sg = Ex{{"network security is fun

ACk2("network security is fun!”)}}
_/

L)

>

tve

Without knowing k1,
Eve can’t read Alice’s message.

Without knowing k2, Eve can’t compute a valid
MAC for her forged message!)

Cryptographic Hash
Functions

 Hash function h: deterministic one-way function
that takes as input an arbitrary message M (sometimes
called a preimage) and returns as output h (M), a small
fixed length hash (sometimes called a digest)

* Hash functions should have the following two
properties:

— compression: reduces arbitrary length string to fixed
length hash

— ease of computation: given message M, h (M) is easy to
compute

Hash functions are usually fairly inexpensive
(i.e., compared with public key cryptography)

adwait$ openssl speed sha

To get the most accurate results, try to run this

program when this computer is idle.

Doing shal for 3s on 16 size blocks: 9255072 shal's in 2.97s

Doing shal for 3s on 64 size blocks: 6687775 shal's in 2.97s

Doing shal for 3s on 256 size blocks: 3570692 shal's in 2.98s

Doing shal for 3s on 1024 size blocks: 1234275 shal's in 2.97s

Doing shal for 3s on 8192 size blocks: 174704 shal's in 2.97s

Doing sha256 for 3s on 16 size blocks: 6374888 sha256's in 2.98s

Doing sha256 for 3s on 64 size blocks: 3926000 sha256's in 2.98s

Doing sha256 for 3s on 256 size blocks: 1697500 sha256's in 2.98s

Doing sha256 for 3s on 1024 size blocks: 532592 sha256's in 2.97s

Doing sha256 for 3s on 8192 size blocks: 72132 sha256's in 2.97s

Doing shabl2 for 3s on 16 size blocks: 4913872 shabl2's in 2.97s

Doing shabl2 for 3s on 64 size blocks: 4915170 shabl2's in 2.97s

Doing shabl2 for 3s on 256 size blocks: 2160195 shab5l2's in 2.97s

Doing shabl2 for 3s on 1024 size blocks: 795869 shabl2's in 2.97s

Doing shabl2 for 3s on 8192 size blocks: 113596 shabl2's in 2.97s

OpenSSL 0.9.8zh 14 Jan 2016

built on: Jan 23 2017

options:bn(64,64) md2 (int) rc4d (ptr,char) des(idx,cisc,16,int) aes(partial) blowfish (idx)
compiler: -arch x86 64 -fmessage-length=0 -pipe -Wno-trigraphs -fpascal-strings -fasm-blocks -03 -
D REENTRANT -DDSO DLFCN -DHAVE DLFCN H -DL ENDIAN -DMD32 REG T=int -DOPENSSL NO IDEA -DOPENSSL PI(
DOPENSSL THREADS -DZLIB -mmacosx-version-min=10.6

available timing options: TIMEB USE TOD HZ=100 [sysconf value]

timing function used: getrusage

The 'numbers' are in 1000s of bytes per second processed.

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
shal 49891.95k 144024.59k 307178.70k 425012.39k 482007.81k
sha256 34281.92k 84424.15k 146042.36k 183727.34%k 198842.41k 26

shab512 26445.57k 105956.90k 186126.06k 274305.03k 313698.39%k

Why might hashes be useful?

* Message authentication codes (MACs):
—e.g:MACk(M) = h(K|M)
(but don't do this, use HMAC instead)
 Modification detection codes:
— detect modification of data

—any change in data will cause change in hash

Prof. Pedantic proposes the following
hash function, arguing that it offers both
compression and ease of computation.

* h(M) = 0 if the number of Os in M is divisible
by 3
* h(M) = | otherwise

Why is this a lousy crypto hash function!?

Cryptographic Hash
Functions

Properties of good cryptographic hash functions:

— preimage resistance: given digest y, computationally
infeasible to find preimage x' such that h(x')=y
(also called “one-way property”)

— 2nd-preimage resistance: given preimage Xx,
computationally infeasible to find preimage x' such that
h(x)=h(x)

(also called “weak collision resistance”)

— collision resistance: computationally infeasible to find
preimages i,j such that h(i)=h(j)
(also called “strong collision resistance”)

29

Birthday Attack

* Birthday Paradox: chances that 2+ people
share birthday in group of 23 is > 50%.

 (General formulation

— function f() whose output is uniformly distributed over H
possible outputs

— Number of experiments Q(H) until we find a collision is
approximately:

/[
Q(H) =~ 1/§H
Q(365) ~ 4 /%365 — 23.94

* Why is this relevant to hash sizes?

- E.g.,

30

See: https://betterexplained.com/articles/understanding-the-birthday-paradox/

https://betterexplained.com/articles/understanding-the-birthday-paradox/

Practical
Implications

Choosing two
messages that have the
same hash h(x) = h(x’)
is more practical than
you might think.

Example attack:
secretary is asked to
write a “‘bad” letter, but
wants to replace with a
“good” letter.

— Boss signs the letter
after reading

Dear Anthony,

This letter is X you to] (Mr. P.
I am writing to introduce i, you __ Alfred y__

new chief
newly appointed| |senior

European area will take the
Northern | gyrope division| * H®|has taken| ©OVeT | _-

our
Barton, the { } jewellery buyer for {the}

all

S . . watches and jewellery
responsibility for the whole of our interests in

jewellery and watches

area every

in the [. Please [atford him | help he
|region| ° all the| p

may need
| give }

needs
[seek out modern . top)
to | find the most up to date lines for the high| end of the

empowered
authorized

samples |

} to receive on our behalf {specimensj of the

market. He is {

latest) (watch and jewellery up limit
newest| |jewellery and watch| PTroducts, \sypject| t° 2 \maximum

carry

X A i letter
of ten thousand dollars. He will {hold} a signed copy of this { }

document

}) . . } } , appended
as proof of identity. An order with his signature, which is {1 ttached

{authorizes

above
allows

} you to charge the cost to this company at the {head office

level
volume

fully

address. We { } expect that our { } of orders will increase in

following trust

be
the { next } year and {hope} that the new appointment will {prove}

{advantageous

an advantage} to both our companies.

Figure 11.7 A Letter in 2%’ Variations

(from Stallings, Crypto and Net Security)

Some common cryptographic

hash functions
MD5 (128-bit digest) [don’t use this]
SHA-| (160-bit digest) [stop using this*]
SHA-256 (256-bit digest)
SHA-512 (512-bit digest)

SHA-3 recent competition winner]

32

General Structure of Hash

f f f ——o
1V = n n n n
CV —4 D e o o sl
0 CVq CVia
IV = Initial value L = number of input blocks
CV; = chaining variable n = length of hash code
Y; = ith input block b = length of input block
f = compression algorithm

(from Stallings, Crypto and Net Security)

33

Message Extension Attack

* Why is MAC, (M) = H(k|M) bad!?
* How can Eve append M’ to M!?
— Goal: compute H(k|M|M’) without knowing k

* Solution: Use H(k|M) as IV for next f iteration
in H()

A Better MAC

* Objectives
— Use available hash functions without modification

— Easily replace embedded hash function as more
secure ones are found

— Preserve original performance of hash function

— Easy to use

HMAC

HMAC (kM) =
H(k@®opad || H(kDipad || M))

— Attacker cannot extend MAC as
before

— Prove it to yourself

ipad =0x363636...

Lz

b bits

4
<

»d
L

b bits

Si

Yo

Yy

IV

n bits

v

Hash

opad =0x5C5C5C.

Lo,

n bits

|f:|H(S I M)

pad to b bits

A 4

So

n bits

V—m—

v

Hash

bits

(from Stallings, Crypto and Net Security)

36

The End

