

CSCI 445: Mobile Application Security

Lecture 2

Prof.Adwait Nadkarni

What is security?

- Garfinkel and Spafford (1991)
 - "A computer is secure if you can depend on it and its software to behave as expected."
- Harrison, Ruzzo, Ullman (1978)
 - "Prevent access by unauthorized users"
- Not really satisfactory does not truly capture that security speaks to the behavior of others
 - Expected by whom?
 - Under what circumstances?

Security Goals

- Confidentiality: Prevention of unauthorized disclosure of information
- Integrity: Prevention of unauthorized modification of information
- Availability: Prevention of unauthorized withholding of information or resources

Availability

Security Goals (continued)

- Authenticity: Related to integrity, but also speaks to the sender, as well as freshness
- Secrecy: Similar to confidentiality, but often used when discussing specific mechanisms, e.g., access control
- Non-repudiation: Prevent a party from denying that some action took place
- Privacy: The ability/right to control access to one's information. There are many definitions. Often conflated with confidentiality/secrecy.

Risk

- Assets are valued resources that can be misused
 - Monetary, data (loss or integrity), time, confidence, trust
- Risk is the potential for an asset to be misused
 - Many different formulas, e.g., (Risk = likelihood * impact)
 - What does being misused mean?
 - Privacy (personal)
 - Confidentiality (communication)
 - Integrity (personal or communication)
 - Availability (existential or fidelity)
- Q:What is at stake in your life?

Threats

- A threat is a specific means by which an attacker can put a system at risk
 - The goal and abilities of an attacker (e.g., eavesdrop , fraud, access denial)
 - Independent of what can be compromised
- A *threat model* is a collection of threats that deemed important for a particular environment
 - A collection of attacker(s) abilities
 - E.g., A powerful attacker can read and modify all communications and generate messages on a communication channel

Vulnerabilities (attack vectors)

- A *vulnerability* is a systematic artifact that exposes the user, data, or system to a threat
- E.g., buffer-overflow, WEP key leakage
- What is the source of a vulnerability?
 - Bad software (or hardware)
 - Bad design, requirements
 - Bad policy/configuration
 - System Misuse
 - Unintended purpose or environment
 - E.g., student IDs for liquor store

Adversary

- An *adversary* is any entity trying to circumvent the security infrastructure (sometimes called *attacker*)
 - The curious and otherwise generally clueless (e.g., script-kiddies)
 - Casual attackers seeking to understand systems
 - Venal people with an ax to grind
 - Malicious groups of largely sophisticated users (e.g, chaos clubs)
 - Competitors (industrial espionage)
 - Governments (seeking to monitor activities)

Are users adversaries?

This is known as the insider adversary!

- Have you ever tried to circumvent the security of a system you were authorized to access?
- Have you ever violated a security policy (knowingly or through carelessness)?

Attacks

- An attack occurs when someone attempts to exploit a vulnerability
- Kinds of attacks
 - **Passive** (e.g., eavesdropping)
 - Active (e.g., password guessing)
 - **Denial of Service** (DOS)
 - Distributed DOS using many endpoints

- A compromise occurs when an attack is successful
 - Typically associated with taking over/altering resources

Participants

- Participants are expected system entities
 - Computers, agents, people, enterprises, ...
 - Depending on context referred to as: servers, clients, users, entities, hosts, routers, ...
 - Security is defined with respect to these entites
 - Implication: every party may have unique view
- A trusted third party
 - Trusted by all parties for some set of actions
 - Often used as introducer or arbiter

Trust

- Trust refers to the degree to which an entity is expected to behave
- What the entity not expected to do?
 - E.g., not expose password
- What the entity is expected to do (obligations)?
 - E.g., obtain permission, refresh
- A trust model describes, for a particular environment, who is trusted to do what?
- Note: you make trust decisions every day
 - Q:What are they?
 - Q:Whom do you trust?

Trusted vs. Trustworthy

- Trusted: a trusted system or component is one whose failure can break the security policy
- Trustworthy: a trusted system or component is one that won't fail

Security Model

- A security model is the combination of a trust and threat models that address the set of perceived risks
 - The "security requirements" used to develop some cogent and comprehensive design
 - Every design must have security model
 - LAN network or global information system
 - Java applet or operating system
- The single biggest mistake seen in use of security is the lack of a coherent security model

It is very hard to retrofit security (design time)

Need for apps to be explicit about these things to be secure.

- Impact: <u>73%</u> global market share (<u>https://www.statista.com/statistics/272698/g</u> <u>lobal-market-share-held-by-mobile-</u> <u>operating-systems-since-2009/</u>
- Low barrier for entry for developers
 - Have 25\$ and a phone?
- Apps can be *installed* by the user: No need for an app store.
- The OS is most evolved in terms of:
 - Application inter-operability
 - OS extensibility: Even some crucial features can be substituted by third party apps (e.g., Launcher)

Architecture

- The Android OS is built upon Linux and includes many libraries and a core set of apps.
- The *middleware* makes it interesting
 - Not focused on UNIX processes
 - API for common resources, inter-app communication
 - Applications consist of components of distinct types
 - Apps interact via components
 - Binder framework for inter component communication.
 - We will focus on security with respect to components.

Architecture

Applications third party apps **Middleware** Userspace Location Package Notification (reference monitor Window Resource Telephony in middleware) Native C/C++ Libraries Media Framework Hardware Abstraction Layer (HAL) Audio Bluetooth Linux Kernel Kernel Drivers Audio Binder (IPC) Display Kernel space (reference monitor Keypad Bluetooth Camera in kernel) Shared Memory USB **Power Management** 17

Component Model

• Four different types of components:

- Distinct functions, a lifecycles: Managed by the ActivityManager System service.
- Functional decomposition of the app: Great boundary for security! (in contrast w/ processes)

Component Model

- Activities: User Interaction (i.e., the UI)
- Services: Background computation
- **Content Providers:** Interface to data (storage, cloud, memory)
- Broadcast Receiver: Receive events
- Different from processes: An app's components may or may not exist in the same process (android:process)
- Interactions within/among apps are based on components
 - Target components in the same or different app
 - But first ...

Android Manifest

- Describes the application package:
 - Application components, and access rules for components
 - Intent filters (services provided by components)
 - Versioning information (minimum, target, maximum API)
 - Permissions:
 - That the application requires
 - Custom permissions declared by the app
 - You can tell a lot about an application by looking at its manifest
 - Some of the initial security analysis in this class will involve Application manifests

```
1<?xml version="1.0" encoding="utf-8"?>
 2<manifest xmlns:android="http://schemas.android.com/apk/res/android"</pre>
        package="org.siislab.tutorial.friendtracker"
 3
 4
        android:versionCode="1"
 5
        android:versionName="1.0.0">
 6
      <application android:icon="@drawable/icon" android:label="@string/app_name">
 7
          <activity android:name=".FriendTrackerControl"</pre>
 8
                    android:label="@string/app_name">
 9
              <intent-filter>
10
                  <action android:name="android.intent.action.MAIN" />
11
                  <category android:name="android.intent.category.LAUNCHER" />
12
              </intent-filter>
13
          </activity>
          <provider android:authorities="friends"</pre>
14
15
                android:name="FriendProvider"
16
                android:writePermission="org.siislab.tutorial.permission.WRITE_FRIENDS"
                android:readPermission="org.siislab.tutorial.permission.READ_FRIENDS">
17
18
          </provider>
19
          <service android:name="FriendTracker" android:process=":remote"</pre>
20
                android:permission="org.siislab.tutorial.permission.FRIEND_SERVICE">
21
          </service>
22
          <receiver android:name="BootReceiver">
23
              <intent-filter>
24
                  <action android:name="android.intent.action.BOOT_COMPLETED"></action>
25
              </intent-filter>
26
          </receiver>
27
      </application>
28
29
      <!-- Define Permissions -->
      cpermission android:name="org.siislab.tutorial.permission.READ_FRIENDS"></permission>
30
31
      <permission android:name="org.siislab.tutorial.permission.WRITE_FRIENDS"></permission>
32
      rmission android:name="org.siislab.tutorial.permission.FRIEND_SERVICE">/permission>
33
34
      <!-- Uses Permissions -->
35
      <uses-permission android:name="org.siislab.tutorial.permission.READ_FRIENDS"></uses-permission>
36
      <uses-permission android:name="org.siislab.tutorial.permission.WRITE_FRIENDS"></uses-permission>
37
      <uses-permission android:name="org.siislab.tutorial.permission.FRIEND_SERVICE"></uses-permission>
38
39
      <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"></uses-permission>
40
      <uses-permission android:name="android.permission.READ_CONTACTS"></uses-permission>
41
      <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"></uses-permission>
42</manifest>
```

$\begin{array}{l} Permissions \\ \mathit{security} == \mathit{permissions} \end{array}$

- For accessing device/user resources: SDcard, network, phone IMEI/IMSI, contacts, calendar data, ...
- For interacting with other apps
 - Custom permissions
- Permissions define capabilities
- Users make permission decisions
 - Install-time (< Android 6.0)</p>
 - versus runtime (>=Android 6.0) ?
- Permissions provide:
 - User consent?
 - Review triaging
- Many believe permissions are not enough

Intents

- Most common form of Inter-component communication
- Intents are objects used as inter-component messages
 - Starting the user interface for an app
 - Sending a message between two components
 - Starting/binding to a background service
- Two types: explicit or implicit
 - Explicit: start activity A from app XYZ"
 - Implicit: start an activity to ACTION_VIEW a PDF

Intent Filters

- Intents are an *indirect* and *asynchronous* communication mechanism.
- Intent filters describe the service provided by a component: ACTION, DATA, CATEGORY, ...
- The system matches intents with filters

- But, what if there is more than one match?
 - Activity: Ask the user!
 - Service: ?
- Security implications? Intent Hijacking

Network, Storage access

- API provided by the OS
- Good enough for most application tasks
- App developers do not use safe defaults. Why?
 - Debugging
 - Legacy code
- For example:

openFileOutput(FileName) vs FileOutputStream(/path/to/file)

- Creating MODE_WORLD_READABLE files
- Allow all certificates in WebViews

 Lots of problems here: This class will teach you what to look for; and how.

25

Recall: Project Proposal

• Deadline: Feb 08, 11:59 PM (Thursday)

- At least five unique application ideas in order of interest
- Each possessing at least 4 characteristics (i.e., network, storage, inter-app communication, permissions, Webviews, etc.).
- Part of one or more <u>real</u> features.
- Names of **up to 4 group members**.
- **IMPORTANT:** Immediately after submitting the proposal to Blackboard, **schedule a 30 minute meeting with me**
- I have the final say on your project and group