CSCI 445 - Homework #4: Automated Security Analysis*
Assigned March 31st; Due 11:59pm on April 16th {50 points}

Prof. Adwait Nadkarni

1 Assignment Goals and Overview

The objective of this assignment will be to teach you how to automate your security analysis, and
more importantly, the trade offs involved in doing so.

Task: You will be given five Android applications. Your task is to write a script that automatically
locates SSL-related vulnerabilities in the assembly code. Your script should execute as follows:

$ <your-script> -i target-app.apk -o output.txt

That is, your script should (1) take an apk name/path relative to the current directory as input,
(2) disassemble it (using apktool), (3) analyze the assembly code (i.e., the .smali files), and (4)
print the analysis results in an output.txt file.

For example, if my script is called analyze.sh, and I have the vulnerable.apk in the directory apps/,
then I should be able to place analyze.sh inside apps/, and on executing, find the output in app-
s/output.txt. This should work likewise, for all five apps provided. The detailed assignment, with
points, is described in Section 2.

For automating your analysis, you will be permitted to use one of the following: (1) bash, (2)
python, or if you really want to, (3) perl. Even if you have no prior experience with scripting,
you should be able to complete the assignment, as the scripting involved will be really basic (i.e.,
mostly traversing directories and parsing strings).

Tools: You will use apktool to disassemble apps, as before. Calling it from within a bash/python
script is relatively straightforward, and not different from calling any other program. In addition
to apktool, you can use/incorporate existing tools in your scripts, if and only if they come pre-
installed with a standard Linux distribution; e.g., grep, cut, awk, unig. No other third-party tool
will be permitted; when in doubt, ask.

Environment: Your scripts should execute on a Ubuntu 16.04.4 LTS Desktop build, without the
requirements of any additional libraries/tools. I recommend creating a Virtual Machine to perform

*Last revised on March 31, 2024.


http://linuxcommand.org/
https://www.python.org/about/gettingstarted/
https://learn.perl.org/

all experiments, using this image: Ubuntu Desktop 16.04.4 LTS. The TA will use the same image
to test your scripts against the 5 target apps.

2 Assignment Description

In this assignment, you will write a script that looks for SSL-related vulnerabilities in five apps.

Allocation of Points: The assignment is worth 50 points in total. There will be two deliverables:
(1) lastname-analyze.sh/pl/py (i.e., depending on whether it is a shell, perl, or python script), and
(2) lastname-report.pdf, both zipped into a lastname.zip. The allocation of points will be as follows:

1. {40 points} Task A: Vulnerability discovery: lastname-analyze.sh/pl/py finds one poten-
tially exploitable! flaw each, in 4 out of 5 apps. 10 points per flaw. Note that each flaw can
be different (i.e., you don’t need to find the same flaw in all apps). Each flaw found should
be described in lastname-report.pdf to score points (0 points without description).

2. {10 points} Task B: False Positives: For each app, your script will likely output findings
that are not necessarily flaws. Identify and list these false positives, as well as the true
positives (i.e., findings that are flaws), across all apps, in a separate lastname-report.pdf.

Negative Points: Points will be deducted for each instance of the following:
1. Script crashes{-50 points}: i.e., ZERO points will be awarded if your script does not work.

2. Hardcoded vulnerability in script{-10 points} You cannot hardcode paths or classes of the
target apps in which you are looking for vulnerabilities. Your scripts should generally apply
to all apps, and not have rules specific to one or more target apps. When in doubt, ask.

3 Recommended Process

Take a look at this paper: Why eve and mallory love android: an analysis of android SSL. It will
tell you what to look for in apps, i.e., the kind of mistakes apps make. To successfully complete
this assignment, here are the recommended steps:

1. Step 1: From the paper, identify 3-5 types of application characteristics that lead to SSL
flaws, that you want to look for (e.g., the use of specific classes that are almost always unsafe,
or use of HTTP instead of HTTPS).

2. Step 2: Write a script (i.e., lastname-analyze.sh/pl/py that disassembles the app using apktool
and parses the app’s smali code, i.e., excludes code in the libraries included with the app,
for these flaws. HINT: The app code is generally found along the same path as suggested
in its package name. For instance, if my app’s package name is com.professor, then look
in:/smali/com /professor. Look for flaws identified in Step 1, in the smali code.

!Code that is flawed, but not called from anywhere in the app, is not exploitable


http://releases.ubuntu.com/16.04/ubuntu-16.04.6-desktop-amd64.iso
https://dl.acm.org/citation.cfm?id=2382205

3. Step 3: Use manual analysis to confirm that each flaw identified by your script is a potentially
exploitable vulnerability, i.e., not a false positive.

4. Step 4: If you have found the number of flaws necessary for a successful completion of this
assignment, continue. If not, find another characteristic/flaw to look for from Step 1, and
goto step 2.

5. Step 5: Describe each vulnerability found, in the analysis report PDF, and indicate its location
in the app.

6. Step 6: Through manual verification, identify false positives in the output of your script,
when executed on all the 5 apps, and state their final number in the analysis report PDF.

4 Submission Instructions

Submit your solution as a single tarball or zip (tar.gz/zip archive) named lastname-hw4.tar.gz
or lastname-hw4.zip to Blackboard. The solution should contain two components: (1) A single
script lastname-analyze.sh/pl/py (i.e., depending on whether it is a shell, perl, or python script),
and (2) A single PDF lastname-report.pdf, which is the analysis report that contains a description
of the vulnerabilities found, as well as the false positive count.

Please post questions (especially requests for clarification) about this homework to Piazza.


https://blackboard.wm.edu/

	Assignment Goals and Overview
	Assignment Description
	Recommended Process
	Submission Instructions

