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Announcements
• Project Milestone 2 deadline on March 13th

• Use API level 32 or higher

• Update your Android Studio (allows Pixel 6 
AVDs)
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Recap: Apps are programs

• What does a program do?: Transform inputs à outputs

• What are these inputs/outputs?
• Network

• Storage
• User Interface

• Sensors/Camera/Mic
• Other applications

• ...?
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Program Vulnerabilities



Programming
• Why do we write programs?

• Function

• What functions do we enable via our programs?

• Some we want -- some we don’t need

• Adversaries take advantage of such “hidden” function
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A Simple Program
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int authenticated = 0; 
char packet[1000]; 

while (!authenticated) { 
  PacketRead(packet); 
  if (Authenticate(packet))  
    authenticated = 1; 
} 
 if (authenticated) 
   ProcessPacket(packet); 



A Simple Program
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What if packet is larger 
than 1000 bytes?

int authenticated = 0; 
char packet[1000]; 

while (!authenticated) { 
  PacketRead(packet); 
  if (Authenticate(packet))  
    authenticated = 1; 
} 
 if (authenticated) 
   ProcessPacket(packet); 



Address Space Layout
• Write beyond variable limit
• Can write the without limits in 

some languages

• Can impact values
• In heap, on stack, in data

• Can impact execution integrity
• Can jump to arbitrary points in 

the program

• Function pointers

• Return addresses
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Buffer Overflow
• How it works
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Buffer Overflow Defense
• “Canary” on the stack
• Random value placed 

between the local vars 
and the return address
• If canary is modified, 

program is stopped

• Are we done?
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A Simple Program
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What if packet is only 
1004 bytes?

int authenticated = 0; 
char packet[1000]; 

while (!authenticated) { 
  PacketRead(packet); 
  if (Authenticate(packet))  
    authenticated = 1; 
} 
 if (authenticated) 
   ProcessPacket(packet); 



Overflow of Local Variables

• Don’t need to modify return address

• Local variables may affect control

•What kinds of local variables would 
impact control?

•Ones used in conditionals 
(example) and...?
• Function pointers

•What can you do to prevent that?
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int authenticated = 0; 
char *packet = (char *)malloc(1000); 

while (!authenticated) { 
  PacketRead(packet); 
  if (Authenticate(packet))  
    authenticated = 1; 
} 
 if (authenticated) 
   ProcessPacket(packet); 

A Simple Program
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What if we allocate the
packet buffer on the heap?



Heap Overflow
• Overflows may occur on the heap also
• Heap has data regions and 

metadata
• Attack
• Write over heap with target 

address (heap spraying)
• Hope that victim uses an 

overwritten function pointer 
before program crashes
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Another Simple Program

15

Any problem with this
conditional check?

int size = BASE_SIZE; 
char *packet = (char *)malloc(1000);
char *buf = (char *)malloc(1000+BASE_SIZE);

 strcpy(buf, FILE_PREFIX);
   size += PacketRead(packet); 
   if ( size < sizeof(buf)) {
   strcat(buf, packet);
   fd = open(buf); 
  } 



Integer Overflow
• Signed variables represent positive and negative values
• Consider an 8-bit integer: -128 to 127

• Weird math:     127+1 = ???
• This results in some strange behaviors
• size += PacketRead(packet) 
•What is the possible value of size?

• if ( size < sizeof(buf)) {
•What is the possible result of this condition?

• How do we prevent these errors?
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qsee_not_in_region(list, start, 
start+size);
...
int qsee_not_in_region(void 
*list, long start, long end) 
{ 
 if (end < start) 
 { tmp = start; start = end; 
 end = tmp; } 
 // Perform validation ... 
}

https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-
TrustZone-WP.pdf 



int authenticated = 0; 
char *packet = (char *)malloc(1000); 

while (!authenticated) { 
  PacketRead(packet); 
  if (Authenticate(packet))  
    authenticated = 1; 
} 
if (authenticated) 
   ProcessQuery(“Select”, partof(packet)); 

A Simple Program
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Any problem with 
this query request?



Parsing Errors
•Have to be sure that user input can only be used for expected function

• SQL injection: user provides a substring for an SQL query that changes the query 
entirely (e.g., add SQL operations to query processing)

SELECT fieldlist FROM table

WHERE field = 'anything' OR 'x'='x';

•Goal: format all user input into expected types and ranges of values

• Integers within range

• Strings with expected punctuation, range of values

•Many scripting languages convert data between types automatically -- are 
not type-safe -- so must be extra careful
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Secure Input Handling
• David Wheeler’s Secure Programming for Linux and UNIX

• Validate all input; Only execute application-defined inputs!

• Avoid the various overflows 

• Minimize process privileges

• Carefully invoke other resources

• Send information back carefully
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Application Analysis 
Goals

21



Why Study Apps?
• Coarse Goals: Find malware, bad behavior, understand 

what will break if we change things

• To elaborate: 
• Malicious behavior: What is malicious?
• Vulnerable network communication

• Privilege Escalation
• Stealing private information

• Permission misuse
• Repackaging

• Other potentially harmful behavior
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Preventing Malware - I
• Like PC malware, smartphone malware is 

designed with an incentive in mind.
• Usually boils down to making money

• What does malware do?
• Ransomware: Make important data 

unavailable
• Premium-rate SMS

• Mobile botnets
• Spyware

• Install backdoors, bring more malware...
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Preventing Malware - II
• Two types of malware:
• Works within the permission system (most)

• Acquires root-level access (harder to remove)
• Static and dynamic analysis in the market (Bouncer)

• Inherent limitations: what are you looking for?

• Class Exercise: Is on-phone antivirus software needed?
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Permission misuse
• Recap: least privilege
• Basic violation: 

• Ask for more permissions than you use
• More nuanced violation: 

• Ask for permissions that you use, but 
shouldn’t
• Why is this difficult to judge? 

•How do you decide what is 
appropriate?
• Some ideas: based on UI, description, 

reviews, intuition, privacy policies
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Stealing User Data
• What data are we talking about?:
• Device data (OS controls access): device identifiers, location, 

contacts, calendar, photos
• App-specific data (apps/user control access): Email, notes, 

files, etc.

• Q: Why do apps need user data?
• A: As a part of their functionality, to provide personalized 

service,  advertising

• Goal: To find if apps are stealing private data
• i.e., in the absence of user consent
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SSL Vulnerabilities
• Apps are verifiers of SSL connections, but make mistakes
• No certificate verification

• No Hostname verification
• ...

• Why is this bad?
• Confidentiality: The adversary can steal your data

• E.g., banking, shopping, social media 
• Integrity: The adversary can modify your data
• E.g., banking, shopping, smart*

• HW4: Automate SSL misuse analysis
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Privilege Escalation
• Even benign apps may have vulnerable interfaces
• If malware exploits such a vulnerable interface, 

what does that make the vulnerable app?
• Confused deputy

• Sometimes, apps collude to combine 

privileges
• Other ways to escalate privilege: 

• Vulnerabilities in system services
• Vulnerabilities in vendor apps

• Vulnerabilities in the Linux kernel
• ...
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Repackaging
• Malware authors (1) download popular apps (2) disassemble 

them, (3) add malicious payload, and (4) distribute on 
official/unofficial app markets

• Why would users install such apps?
• Free versions of paid apps!

• Identical to original app
•Geographic constraints

• Detection at the market
• Still a problem. Why? 
• Available in unofficial markets

• Lesson: Official markets only!
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PHA (Potentially Harmful apps)
• Grayware: What makes it Gray?
• Behavior that could be leveraged for a malicious 

objective,
• but, we don’t know that objective

• Examples:

• Imposters: Impersonate popular apps
• Madware: Aggressive ads (e.g., install shortcuts, change 

settings)
• Misrepresentors (e.g., “weight scale”, antivirus that does 

nothing)
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Andow, Benjamin, Adwait Nadkarni, Blake Bassett, William Enck, and Tao Xie. "A study of grayware on 
google play." In Security and Privacy Workshops (SPW), 2016 IEEE, pp. 224-233. IEEE, 2016.



How do we study apps?
• Generally, two ways to do this:
• Static analysis tells you what can potentially happen

• Getting source code: ded, dex2jar, jadx, androguard
• Extending existing analysis frameworks (e.g., Fortify, soot)

• Frameworks targeted at Android: FlowDroid, Argus
• Dynamic analysis tells you what actually happened in a specific 

runtime environment

• Several tools: TaintDroid, DroidScope
• Derivative environments: Droidbox, andrubis, MarvinSafe

• Hard to automate; need to explore every code path in the 
app
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