
CSCI 445:
Mobile Application Security

Lecture 12

Prof. Adwait Nadkarni

1Derived from Slides by William Enck

Announcements
• Project Milestone 2 deadline on March 13th

• Use API level 32 or higher

• Update your Android Studio (allows Pixel 6
AVDs)

2

Recap: Apps are programs

• What does a program do?: Transform inputs à outputs

• What are these inputs/outputs?
• Network

• Storage
• User Interface

• Sensors/Camera/Mic
• Other applications

• ...?

3

Program
Input Output

Program Vulnerabilities

Programming
• Why do we write programs?

• Function

• What functions do we enable via our programs?

• Some we want -- some we don’t need

• Adversaries take advantage of such “hidden” function

5

A Simple Program

6

int authenticated = 0;
char packet[1000];

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

A Simple Program

7

What if packet is larger
than 1000 bytes?

int authenticated = 0;
char packet[1000];

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

Address Space Layout
• Write beyond variable limit
• Can write the without limits in

some languages

• Can impact values
• In heap, on stack, in data

• Can impact execution integrity
• Can jump to arbitrary points in

the program

• Function pointers

• Return addresses

8

Text

Data

Stack

Heap

(low address)

(high address)

Buffer Overflow
• How it works

9

Local Var

Buffer

Local Var

Return Address

Func Parameters

Previous Function

New Rtn

Evil Code
Evil Code
Evil Code
Evil Code

St
ac

k
Fr

am
e

Buffer Overflow Defense
• “Canary” on the stack
• Random value placed

between the local vars
and the return address
• If canary is modified,

program is stopped

• Are we done?

10

Local Var

Buffer

Local Var

Return Address

Func Parameters

Previous Function

CANARY

A Simple Program

11

What if packet is only
1004 bytes?

int authenticated = 0;
char packet[1000];

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

Overflow of Local Variables

• Don’t need to modify return address

• Local variables may affect control

•What kinds of local variables would
impact control?

•Ones used in conditionals
(example) and...?
• Function pointers

•What can you do to prevent that?

12

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
 if (authenticated)
 ProcessPacket(packet);

A Simple Program

13

What if we allocate the
packet buffer on the heap?

Heap Overflow
• Overflows may occur on the heap also
• Heap has data regions and

metadata
• Attack
• Write over heap with target

address (heap spraying)
• Hope that victim uses an

overwritten function pointer
before program crashes

14

Another Simple Program

15

Any problem with this
conditional check?

int size = BASE_SIZE;
char *packet = (char *)malloc(1000);
char *buf = (char *)malloc(1000+BASE_SIZE);

 strcpy(buf, FILE_PREFIX);
 size += PacketRead(packet);
 if (size < sizeof(buf)) {
 strcat(buf, packet);
 fd = open(buf);
 }

Integer Overflow
• Signed variables represent positive and negative values
• Consider an 8-bit integer: -128 to 127

• Weird math: 127+1 = ???
• This results in some strange behaviors
• size += PacketRead(packet)
•What is the possible value of size?

• if (size < sizeof(buf)) {
•What is the possible result of this condition?

• How do we prevent these errors?

16

qsee_not_in_region(list, start,
start+size);
...
int qsee_not_in_region(void
*list, long start, long end)
{
 if (end < start)
 { tmp = start; start = end;
 end = tmp; }
 // Perform validation ...
}

https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-
TrustZone-WP.pdf

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
 PacketRead(packet);
 if (Authenticate(packet))
 authenticated = 1;
}
if (authenticated)
 ProcessQuery(“Select”, partof(packet));

A Simple Program

17

Any problem with
this query request?

Parsing Errors
•Have to be sure that user input can only be used for expected function

• SQL injection: user provides a substring for an SQL query that changes the query
entirely (e.g., add SQL operations to query processing)

SELECT fieldlist FROM table

WHERE field = 'anything' OR 'x'='x';

•Goal: format all user input into expected types and ranges of values

• Integers within range

• Strings with expected punctuation, range of values

•Many scripting languages convert data between types automatically -- are
not type-safe -- so must be extra careful

18

19

Secure Input Handling
• David Wheeler’s Secure Programming for Linux and UNIX

• Validate all input; Only execute application-defined inputs!

• Avoid the various overflows

• Minimize process privileges

• Carefully invoke other resources

• Send information back carefully

20

ServerBad
Validate Input

Avoid Overflows

Minimize Privilege

Worker
Invoke Safely

Return little

Application Analysis
Goals

21

Why Study Apps?
• Coarse Goals: Find malware, bad behavior, understand

what will break if we change things

• To elaborate:
• Malicious behavior: What is malicious?
• Vulnerable network communication

• Privilege Escalation
• Stealing private information

• Permission misuse
• Repackaging

• Other potentially harmful behavior

22

Preventing Malware - I
• Like PC malware, smartphone malware is

designed with an incentive in mind.
• Usually boils down to making money

• What does malware do?
• Ransomware: Make important data

unavailable
• Premium-rate SMS

• Mobile botnets
• Spyware

• Install backdoors, bring more malware...

23

Preventing Malware - II
• Two types of malware:
• Works within the permission system (most)

• Acquires root-level access (harder to remove)
• Static and dynamic analysis in the market (Bouncer)

• Inherent limitations: what are you looking for?

• Class Exercise: Is on-phone antivirus software needed?

24

Permission misuse
• Recap: least privilege
• Basic violation:

• Ask for more permissions than you use
• More nuanced violation:

• Ask for permissions that you use, but
shouldn’t
• Why is this difficult to judge?

•How do you decide what is
appropriate?
• Some ideas: based on UI, description,

reviews, intuition, privacy policies

25

Stealing User Data
• What data are we talking about?:
• Device data (OS controls access): device identifiers, location,

contacts, calendar, photos
• App-specific data (apps/user control access): Email, notes,

files, etc.

• Q: Why do apps need user data?
• A: As a part of their functionality, to provide personalized

service, advertising

• Goal: To find if apps are stealing private data
• i.e., in the absence of user consent

26

SSL Vulnerabilities
• Apps are verifiers of SSL connections, but make mistakes
• No certificate verification

• No Hostname verification
• ...

• Why is this bad?
• Confidentiality: The adversary can steal your data

• E.g., banking, shopping, social media
• Integrity: The adversary can modify your data
• E.g., banking, shopping, smart*

• HW4: Automate SSL misuse analysis

27

Privilege Escalation
• Even benign apps may have vulnerable interfaces
• If malware exploits such a vulnerable interface,

what does that make the vulnerable app?
• Confused deputy

• Sometimes, apps collude to combine

privileges
• Other ways to escalate privilege:

• Vulnerabilities in system services
• Vulnerabilities in vendor apps

• Vulnerabilities in the Linux kernel
• ...

28

Repackaging
• Malware authors (1) download popular apps (2) disassemble

them, (3) add malicious payload, and (4) distribute on
official/unofficial app markets

• Why would users install such apps?
• Free versions of paid apps!

• Identical to original app
•Geographic constraints

• Detection at the market
• Still a problem. Why?
• Available in unofficial markets

• Lesson: Official markets only!
29

PHA (Potentially Harmful apps)
• Grayware: What makes it Gray?
• Behavior that could be leveraged for a malicious

objective,
• but, we don’t know that objective

• Examples:

• Imposters: Impersonate popular apps
• Madware: Aggressive ads (e.g., install shortcuts, change

settings)
• Misrepresentors (e.g., “weight scale”, antivirus that does

nothing)

30

Andow, Benjamin, Adwait Nadkarni, Blake Bassett, William Enck, and Tao Xie. "A study of grayware on
google play." In Security and Privacy Workshops (SPW), 2016 IEEE, pp. 224-233. IEEE, 2016.

How do we study apps?
• Generally, two ways to do this:
• Static analysis tells you what can potentially happen

• Getting source code: ded, dex2jar, jadx, androguard
• Extending existing analysis frameworks (e.g., Fortify, soot)

• Frameworks targeted at Android: FlowDroid, Argus
• Dynamic analysis tells you what actually happened in a specific

runtime environment

• Several tools: TaintDroid, DroidScope
• Derivative environments: Droidbox, andrubis, MarvinSafe

• Hard to automate; need to explore every code path in the
app

32

